Parton densities in nuclei at the EIC

P. Zurita

CIPANP2022

September 2nd 2022, Orlando, FL, EE.UU.

Outline

- Brief recap of nuclear PDFs.
- Current efforts.
- Nuclear densities at the EIC.
- Summary.

2/16

Brief recap on PDFs:

- They give us all the information about the internal structure of hadrons.
- We can identify several families of PDFs (*collinear*, TMD, GPDs, FFs, etc.)

Brief recap on PDFs:

- They give us all the information about the internal structure of hadrons.
- We can identify several families of PDFs (*collinear*, TMD, GPDs, FFs, etc.)
- PDFs are *universal* and have a *calculable dependence* on the scale(s).
- In perturbative QCD they can't be computed from first principles. Must be inferred from data.

• In an experiment involving nuclei we see things like this:

Genuine modification of the initial state due to the medium.

- 5/16
- If we assume that we can apply pQCD just as in the "proton" case, then the only thing that we can modify is the soft part.
- The popular way: introduce A-dependent *nuclear PDFs*, to be obtained from data.

- If we assume that we can apply pQCD just as in the "proton" case, then the only thing that we can modify is the soft part.
- The popular way: introduce A-dependent *nuclear PDFs*, to be obtained from data.

•
$$f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2)R_i(x, A)$$

- $f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2, A)$
- $f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2) \otimes R_i(x, A)$
- $f_{i/p/A}(x, Q_0^2, A) = NN$

- If we assume that we can apply pQCD just as in the "proton" case, then the only thing that we can modify is the soft part.
- The popular way: introduce A-dependent *nuclear PDFs*, to be obtained from data.

•
$$f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2)R_i(x, A)$$

•
$$f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2, A)$$

- $f_{i/p/A}(x, Q_0^2, A) = f_{i/p}(x, Q_0^2) \otimes R_i(x, A)$ $f_{i/p/A}(x, Q_0^2, A) = NN$ $oldsymbol{O}$
- $oldsymbol{O}$

$$f_{i/A}(x,Q^2) = \frac{Z}{A} f_{i/p/A}(x,Q^2) + \frac{(A-Z)}{A} f_{i/n/A}(x,Q^2)$$

Current efforts

- and ^{III} and ^{III} **nDS**: PRD 69, 074028. **DSSZ**: PRD 85, 074028.
- **F**-**F**: **nTuJu19**: PRD 100, 096015. **nTuJu21**: PRD 105, 094031.
- ■: **HKM**: PRD 64, 034003. **HKN07**: PRC 76, 065207.
- and 록-■: KA15: PRD 93, 014026. KSASG20: PRD 104, 034010.
- NN: nNNPDF1.0: EPJC 79, 471. nNNPDF2.0: JHEP 09, 183. nNNPDF3.0: EPJC 82, 507.

For a detailed presentation on the current status of nPDFs, please use your bilocation+time travelling skills to attend Pit Duwentäster's talk in today's QCD-PDF session.

- Just like for any other PDF family, the sets differ on the choices made during fitting.
- The extraction of a distribution is constrained by the data.

Eur.Phys.Jour. C 82, 413

- Just like for any other PDF family, the sets differ on the choices made during fitting.
- The extraction of a distribution is constrained by the data.

approx % of data with rel.uncer. < 1% approx % of data with rel.uncer. < 5%

Data	w/o cut*	with W ² cut
NC DIS	6.2 65	4.5 61
CC DIS	0 6.5	0 10

* only requiring $Q^2 > 1 \text{ GeV}^2$

- Single inclusive hadron production (needs FF). See Peter Risse's talk (QCD-PDF session)
- Drell-Yan in fixed target $\pi + A$ collisions (needs pion PDFs).
- W and Z production, and di-jets at the LHC.
- D meson production at the LHC (needs D meson FF).
- Prompt photon at the LHC.

Eur.Phys.Jour. C 82, 413

- Single inclusive hadron production (needs FF). See Peter Risse's talk (QCD-PDF session)
- Drell-Yan in fixed target $\pi + A$ collisions (needs pion PDFs).
- W and Z production, and di-jets at the LHC.
- D meson production at the LHC (needs D meson FF).
- Prompt photon at the LHC.

- These observables
 complement DIS.
- DIS is the *cleanest observable* to extract
 PDFs (e.g. HERAPDF).

Eur.Phys.Jour. C 82, 413

Nuclear densities at the EIC

 EIC will have a lager kinematic coverage than the fixed target experiments.

"This broad kinematic coverage ... will revolutionize our current understanding of partonic distributions in nuclei."

Nucl.Phys.A 1026 (2022) 122447

 EIC will have a lager kinematic coverage than the fixed target experiments.

"This broad kinematic coverage ... will revolutionize our current understanding of partonic distributions in nuclei."

Nucl.Phys.A 1026 (2022) 122447

More importantly, the expected uncertainties will be much smaller:

18x110 e-A N.C. Uncertainties

- We will be able to use the EIC data as foundation for nPDF fits.
- Deuterium to ²³⁸U. Perhaps enough to do individual fits.

 We will also be able to properly separate the longitudinal structure function that is *sensitive* to the *gluon* density.

Rept.Prog.Phys. 82 (2019) 2, 024301

12/16

Nucl.Phys.A 1026 (2022) 122447

13/16

 Using the PID needed for SIDIS, we can identify e.g. kaons coming from c quarks.

- The EIC will be the first of its kind for the nuclear community. We will have a "nuclear" HERA.
- Just the DIS data will supersede the old fixed target experiments in quantity, precision and kin. coverage.
- For flavour separation we will continue to need complementary information.
- And we will be able to measure poorly known or unexplored observables (SIDIS, jets, etc).