me What heavy-flavor has taught us about the QGP - What's in store for the future

Deepa Thomas

Aug 29 - Sept 4 2022

14th Conference on the Intersections of Particles and Nuclear Physics (CIPANP 2022)

Introduction

- Quark Gluon Plasma produced in high energy heavy-ion collisions.
- Experimentally exploring QGP since 1990s at SPS, RHIC and at the LHC.
- Experimental evidence of QGP formation from light hadrons
 - Initial medium temperature above the critical Temperature Tc
 - Collective flow: system is strongly interacting and the medium evolution can be described by hydrodynamics ideal fluid
 - Jet quenching: High energy particles interact with QGP and undergoes energy loss
 - High energy density of QGP allows higher mass particles (strange quarks) to be thermally produced.

Why heavy-quarks?

- Our understanding comes from a macroscopic perspective.
- How does QCD interactions at the microscopic level lead to these emergent phenomena? -> probe inner workings of QGP by resolving properties at shorter length scales.

Heavy quarks (charm and beauty)

 collisional and radiative • Low p_T: Brownian motion -> spacial diffusion coefficients

• Dead cone effect

-> Less energy loss compared to light quarks

Open HF and Quarkonia

Open heavy-flavour : heavy quark (c/b) hadronise with light quarks (q)

- D mesons(D⁰, D⁺, D_s, D^{*}₊), B meson (B⁰, B⁺,..)
- In-medium energy loss via collisional and radiative processes
 —> depends on quark mass and color charge

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b)$

 Study fragmentation and hadronisation mechanisms in the presence of the medium

Quarkonia (bound states of cc and bb)

- J/Ψ, Ψ(2S), Y(1S),...
- Screening of color force in the deconfined medium
 –> suppression.
- Depends on the binding energy of Quarkonia and the temperature of the medium.
- Recombination of thermalized heavy quarks in the medium during or at the phase boundary of the deconfined phase —> regeneration

How we measure HF particles

Experimentally heavy-flavour hadrons studied through their decay products:

• c,b -> $I(e,\mu) + X$ • $D^0 -> K^- + \pi^+$ • $D^{*+} -> D^0 + \pi^+$ • $\Lambda c -> K + \pi + p$ • $J/\Psi -> I + I^-$ • $Y(1S) -> I + I^-$ • B -> D + X• $B^+ -> J/\Psi + K$

J/Ψ

HF production in pp

• p_T and y differential measurements of open heavy-flavour hadrons and quarkonia. * Consistent with pQCD calculations within uncertainties at RHIC and LHC.

Differential HF measurements in pp

- HF jet measurements:
 - D0-jet substructure: groomed momentum fraction described by PYTHIA.
 - Ch. particle distribution in b-jets: PYTHIA underestimates large Δr contribution.
 - J/ Ψ fragmentation function J/ Ψ produced less isolated than predicted by PYTHIA.
- Differential measurements need better understanding

* Azimuthal anisotropy (v_n) - information about the initial collision geometry and its fluctuations

- Mass dependent v_2 comparing LF, charm and beauty quarks
- Open HF and quarkonia
- Mass dependent v₃ comparing LF, charm and beauty quarks **
- v_2 and v_3 vs centrality
- ✤ LHC vs RHIC
- Nuclear Modification Factor (RAA) energy loss in the QGP
- Jet structure/fragmentation
- Hadronisation processes

v₂ of heavy quarks at LHC

Quantify HQ interaction strength at low p_T and constraint its path length dependent energy loss at high p_T

- low p_T: $v_2(\pi^{+-}) > v_2(D)$
 - D-meson v_2 possibly from charm quark flow + recombination with the light-flavor quark

v₂ of heavy quarks at LHC

Quantify HQ interaction strength at low p_T and constraint its path length dependent energy loss at high p_T

- low p_T: $v_2(\pi^{+-}) > v_2(D) > v_2(J/\Psi)$
 - D-meson v_2 possibly from charm quark flow + recombination with the light-flavor quark
- Charm quarks interact strongly with the medium and participate in its collective expansion

v₂ of heavy quarks at LHC

- $v_2(\pi^{+-}) > v_2(D) > v_2(J/\Psi)$
 - D-meson v₂ possibly from charm quark flow + recombination with the light-flavor quark
- Charm quarks interact strongly with the medium and participate in its collective expansion
- Open-beauty $v_2 > 0$, while bottomonia $v_2 \sim 0$
 - Impact of path-length dependent energy loss and recombination of open beauty?
 - Negligible recombination expected for Y(1S)

v₂ at LHC and RHIC

 $v_2\,$ of D mesons at different collision energies at LHC and RHIC show similar p_T dependence.

v₃ of heavy quarks at LHC

Sensitive to the fluctuations in the initial energy-density within the overlap region

- $v_3(\pi^{+-}) > v_3(D) > v_3(J/\Psi) \longrightarrow mass hierarchy observed in v_3 as well.$
- Confirms charm quark being kinetically equilibrated in the QGP medium.
- Beauty quark $v_3 \sim 0$

Centrality dependence of v₂ and v₃

- $v_n(h) > v_n(D)$; centrality trend similar for D mesons and charged particles
- v_2 : strong centrality dependence -> due to collision geometry and viscosity effects. • v_3 : weak centrality dependence -> expected from fluctuations in collision geometry.

* Azimuthal anisotropy (v_n) - information about the initial collision geometry and its fluctuations

Nuclear Modification Factor (RAA) - energy loss in the QGP

- Mass dependent energy loss comparing charm and beauty quarks
- Compare open HF and quarkonia
- ✤ LHC vs RHIC
- Jet structure/fragmentation
- Hadronisation processes

 $R_{AA} < 1$ -> charm undergoes energy loss in GQP R_{AA} (0-10%) < R_{AA} (30-50%) < R_{AA} (60-80%) at intermediate and high p_T Hotter and denser medium in central Pb-Pb collisions compared to peripheral collisions.

R_{AA} of D mesons

RAA of D mesons

R_{AA} of D mesons at different collision energies at LHC and RHIC show similar p_T dependence. -> interplay of p_T spectra shape and collision energy/initial temperature.

R_{AA} of beauty

Studying mass dependent energy loss

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b) = > R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Beauty quark measurements using different decay channels -> consistent with each other.

Deepa Thomas

Mass hierarchy of energy loss

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b) = > R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Intermediate p_T (5-20 GeV/c): RAA(b) > RAA(c) ~ RAA (h) High p_T: RAA(b) ~ RAA(c) ~ RAA (h)

arXiv: 2202.00815

Qualitatively described by models: smaller b quark energy loss + dead cone for gluon radiation

Mass hierarchy of energy loss

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b) = > R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Intermediate p_T (5-20 GeV/c): RAA(b) > RAA(c) ~ RAA (h) High p_T : RAA(b) ~ RAA(c) ~ RAA (h)

- Qualitatively described by models: smaller b quark energy loss + dead cone for gluon radiation
- Dip due to formation of D mesons via coalescence harding the D p⊤ spectra

Charmonium

- LHC: increasing suppression with centrality up to N_{part}~100, followed by a constant R_{AA} due to regeneration effects.
- **RHIC**: increasing suppression with centrality; smaller effects of regeneration.

R_{AA} of Quarkonia

Charmonium

- LHC: increasing suppression with centrality up to N_{part}~100, followed by a constant R_{AA} due to regeneration effects.
- **RHIC**: increasing suppression with centrality; smaller effects of regeneration.

R_{AA} of Quarkonia

- Strong suppression of Y(1S) and Y(2S) observed in central Pb-Pb collisions.
- Transport models without regeneration compatible with data.

RAA of open and hidden HF

- Charm: same trend in the full p_T range.
 - Low p_T: dominated by hadronisation via recombination after interactions of charm quarks with QGP.
 - High p_T : J/ Ψ has significant contribution from gluon splitting after in-medium energy loss.
- Beauty: difference at low p_T; same trend at high p_T.

on after interactions of charm quarks with QGP. splitting after in-medium energy loss.

Understanding HQ interaction with QGP

Understanding interaction and energy loss of heavy quarks in the QGP over time -> Simultaneous comparison of D-meson R_{AA} and v₂

- hadronization via coalescence and/or fragmentation required to describe data.
- full p_T range.

• Interplay of CNM effects, realistic evolution of the QGP, heavy-quark interaction (collisional and radiative) and

• Models provide fair description of data -> still challenging for models to describe R_{AA} and v_2 simultaneously in the

Understanding HQ interaction with QGP

• Hadronization via recombination important to describe low and intermediate p_{T} .

Understanding HQ interaction with QGP

- Radiative energy loss important to describe intermediate and high p_T
 - small impact at low p_T

Heavy-flavor transport coefficients

Using data to constraint model parameters : compute χ^2 /ndf between measurements and model predictions

Models use spacial diffusion coefficient at T_c: 1.5-4.5 • More differential measurements could provide more constraints.

Heavy-flavor measurements in A-A

- * Azimuthal anisotropy (vn) information about the initial collision geometry and its fluctuations
- Nuclear Modification Factor (RAA) energy loss in the QGP
- Set structure/fragmentation

pp collision

Hadronisation processes

Jet fragmentation in AA

Study the modification of jet fragmentation in QGP

- Radial distribution of D⁰ in jets D⁰ further away from jet-axis in Pb-Pb compared to pp.
- •HF electron hadron correlations Enhancement of yield on near-side in Pb-Pb compared to p-Pb -> Energy loss goes into low p_T particles

Deepa Thomas

HF-HF angular correlations

Heavy-flavor measurements in A-A

- Azimuthal anisotropy (vn) information about the initial collision geometry and its fluctuations
- Nuclear Modification Factor (RAA) energy loss in the QGP
- Set structure/fragmentation
- * Hadronisation processes

Hadronisation using baryons

Studying heavy-flavour hadronization mechanism using Λ_c

• Λ_{c}^{+}/D^{0} in Pb-Pb collisions higher than in pp -> model calculations with fragmentation and coalescence favors data.

- Λ_c/D^0 in pp vs multiplicity:
 - Default PYTHIA tuned on e⁺e⁻ data (Monash), underestimates the measurement
 - PYTHIA with color reconnections describes multiplicity dependent data in pp

- p_T integrated Λ_{+c}^+ and D^0 values obtained by extrapolating to $p_T = 0$ GeV/c.
 - Similar values of Λ_{c}^{+}/D^{0} ratio for pp, p-Pb and Pb-Pb
- Charm hadronization and Λ_{+c} production do not differ significantly from pp to Pb-Pb collisions.
 - Redistribution of p_T due to interactions in the hadronic phase rather than an enhancement in the overall baryon yield??

Need precise measurement down to $p_T \sim 0$ GeV/c extending to lower multiplicities.

-> More measurements studying hadronization mechanisms needed.

LHC:

Run3

ALICE: New ITS, MFT, TPC readout chambers and fast interaction trigger -> high precision measurements including beauty hadrons possible.

LHCb: SMOG upgrade -> high precision charm measurements at different $\sqrt{s_{NN}}$.

LS3

ATLAS: New ITK —> Heavy-flavor jet measurements

CMS: Upgrade Inner tracker -> Heavy-flavor measurements at low p_{T}

Deepa Thomas

Future prospects

RHIC:

sPHENIX: extensive heavy-flavor physics including measurements of b-jets and full B meson reconstruction

Future prospects

- * pp and p-A collisions
 - * Heavy-flavor production measurements in **minimum bias collisions** -> described by **pQCD calculations**.
 - * In p-A collisions, measurements in minimum bias collisions -> described by pQCD calculations with cold nuclear matter effects.
 - Differential and multiplicity dependent measurements -> indicate **need for better understanding** of initial and final state * effects.

AA collisions

- Charm and beauty quarks undergoes energy loss -> mass hierarchy seen for pT~5-10 GeV/c *
- Charm quarks interact strongly and participate in the collective expansion of the medium at RHIC and LHC.
- Open beauty $v_2 > 0$, hidden beauty $v_2 \sim 0$. **
- Several theoretical models describe the measurements well.
- **Coalescence effects** important at **low p_T**. Fragmentation process takes over at high p_T .

- Does beauty quark interact strong enough to particle in the collective expansion of QGP? **
- Better constraint diffusion coefficients using beauty quarks and differential measurements.
- Modification of jet structure and fragmentation inside the QGP.
- More comprehensive understanding of baryon production and hadronisation processes.
- Small systems
 - Origin of the azimuthal anisotropy.
 - Is there a small QGP produced? If so why dont we see energy loss?

Future is bright for Heavy-flavour studies both at the LHC and at RHIC.

What do we want to learn more?

Backup

HF production in p-A

Study cold nuclear matter effects:

- yield observed at high p_{T} .
 - Models including Cold Nuclear Matter effects describe data within uncertainty for Minimum-Bias collisions.

• R_{pA} of open HF hadrons and quarkonia measured in mid- and large- rapidities at RHIC and LHC —> no large suppression of

Jet substructure of D⁰-tagged jets

Measuring substructure of jets containing D⁰ mesons in pp collision

Grooming jets with SoftDrop algorithm:

Comparison of inclusive and charm jet using different grooming observables:

- Groomed momentum fraction similar and well described by Pythia
- N_{sd} shows significant difference in the behavior
 - Distribution shifted to smaller values for D-jet -> fragmentation of HF has less prongs

• Groomed splitting characterized by N-splitting passing grooming condition(N_{sd}) and groomed momentum fraction (z_g)

Beauty-tagged jet cross-section

- b-tagged jet cross-section and R_{pPb} measured in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for $15 < p_T < 90$ GeV/c.
- Data well described by different POWHEG simulations within uncertainties (HVQ and Dijet)
- R_{pPb} consistent with unity within uncertainties in the measured p_T range.
 - ALICE measurement consistent with CMS in the overlapping p_T range of $50 < p_T < 100$ GeV/c.

Quarkonia RAA

Baryon production with Λ^+_c

v₂ and v₃ of charm quarks at RHIC

- Significant v_n for charm quarks at low p_T .
- Charm v₂ follows N_{CQ} scaling at low p_T at RHIC.
- Charm quarks interact strongly with the medium and possible thermalization.

HIC. dium and possible thermalization.

v2 of heavy-flavor in different systems

- Charm: $v_2(Pb-Pb) > v_2(p-Pb) > v_2(pp)$
- Beauty: v₂(Pb-Pb) > 0, v₂(p-Pb)~v₂(pp)~0

Hadronisation - D_s

Studying heavy-flavour hadronization mechanism

- QGP rich in strange quarks -> expected enhancement of D+s over D⁰ yield if hadronization via coalescence.
- $D_s/D^0 \sim 0.4$ in Pb-Pb while ~ 0.25 in pp -> hint of enhancement

Deepa Thomas

Dead cone effect

Reduction of gluon radiation from heavy quarks at small angles due to conservation of angular momentum: $\theta \sim m_q/E$

First direct observation using recursive jet-clustering techniques to reconstruct gluon emissions from radiating charm quark

- follows the branch containing the D^0 meson at each de-clustering step —>equivalent to following the emitting charm quark through the shower.

Ratio of splitting angle probability distribution - D⁰-jet Inclusive jets

Nature 605 (2022) 440