Probing feebly interacting dark matter with mono-jet searches

Maíra Dutra

Talk based on

- J. Claude, M. Dutra, S. Godfrey arXiv:2208.09422
 - 14th Conference on the Intersections of Particle and Nuclear Physics Lake Buena Vista, Florida

September 3, 2022

- 1. Introduction
- 2. The gluophilic Z' portal
- 3. Conclusions

1. Introduction

- 2. The gluophilic Z' portal
- 3. Conclusions

Introduction: dark matter

85% of the **matter** in the universe (@ Galaxies, @ Galaxy clusters, @ cosmological scales) is effectively neutral

Introduction: dark matter

85% of the **matter** in the universe (@ Galaxies, @ Galaxy clusters, @ cosmological scales) is effectively neutral

Searches for dark matter particles: non-gravitational interactions

Maíra Dutra @ CIPANP 2022

Introduction: dark matter nature & origin

The Dark Matter Scientific Assessment Group 2007 A joint sub-panel of HEPAO and AAAC

Maíra Dutra @ CIPANP 2022

Introduction: DM genesis - freeze-in

Evolution of feebly interacting massive particles (FIMPs) in the early universe:

Colliders&Accelerators

Models with long-lived particles

1506.07532	1811.05478
1611.09540	1908.11387
1805.04423	

Models with long-lived particles

1506.07532	1811.05478
1611.09540	1908.11387
1805.04423	

Models with light mediators

1707.04591	2006.15672
1807.05022	2104.13937
1908.09834	2112.12798

Models with long-lived particles

1811.05478
1908.11387

<section-header><section-header><section-header><section-header><section-header><section-header>

Models with light mediators

1707.04591	2006.15672
1807.05022	2104.13937
1908.09834	2112.12798

Indirect detection

@ High density Astrophysical environments

Models with mediators effectively coupled to photons

1710.02146 1907.07973

Models with long-lived particles

1506.07532	1811.05478
1611.09540	1908.11387
1805.04423	

Direct detection

@ Underground detectors

Models with light mediators

1707.04591 1807.05022 1908.09834

2006.15672 2104.13937 2112.12798

Indirect detection

Models with mediators effectively coupled to photons

1710.02146 1907.07973

1. Introduction

2. The gluophilic Z' portal

3. Conclusions

Model: U(1)' extensions

• Extra U(1) symmetries are present in many BSM scenarios

Model: U(1)' extensions

• Extra U(1) symmetries are present in many BSM scenarios

SM fermions charged under U(1)'

SM fermions **neutral** under U(1)'

Model: U(1)' extensions

• Extra U(1) symmetries are present in many BSM scenarios

SM fermions charged under U(1)'

SM fermions **neutral** under U(1)'

Model: The gluophilic Z' portal

Model: The viable parameter space

• The freeze-in process $(gg \to \bar{\chi}\chi)$ vanishes if the axial coupling $(A_{\chi} = g_{Z'}/2)$ is zero \longrightarrow The process $\bar{\chi}\chi \to \bar{\chi}\chi$ violates unitarity at high energies

Model: The viable parameter space

- High temperature dependence from Z'gg vertex \longrightarrow The freeze-in process $(gg \rightarrow \bar{\chi}\chi)$ happens during reheating
- The freeze-in condition imposes a lower bound on m_{γ}

Model: The viable parameter space

• High temperature dependence from Z'gg vertex \longrightarrow for a given m_{χ} , higher T_{RH} means more DM \longrightarrow heavier mediators needed to avoid overproduction

Model: Indirect detection

- DM self-annihilation into gluons in dwarf spheroidal galaxies produce a continuum flux of γ -rays \implies Fermi-LAT limits
- Freeze-in is tested by indirect detection for m_{γ} from few GeV to few TeV!

Model: Mono-jet + E_T^{miss}

Our FIMP candidate χ can be produced in pp collisions at the LHC in association with an energetic jet

- The ATLAS collaboration provided model-independent limits on the visible cross section (139 fb⁻¹ @ $\sqrt{s} = 13$ TeV): $\sigma \times A \times \epsilon > 0.3$ fb is excluded at 95% C.L. for $E_T^{miss} > 1200$ GeV [arXiv:2102.10874]
- We generated events featuring a single jet with $p_T > 1200~{\rm GeV}$ and $|\eta| < 2.4$ using MadGraph5_aMCNLO

Model: Mono-jet + E_T^{miss}

- The freeze-in is tested by mono-jet searches for $m_{\chi} < \sqrt{s/2}$, even in the off-shell mediator regime!
- FIMPs might be "discovered" in the Run 3 of the LHC

Model: The gluophilic Z' portal

Higher values of Λ weakens the indirect detection and mono-jet bounds
→ the unitarity bound rules-out the region probed by indirect detection
→ the mono-jet limits still probe freeze-in

Model: The gluophilic Z' portal

- Sub-GeV Z' are also of interest in our scenario
- FIMPs can completely evade the mono-jet limits if T_{RH} is too high!

1. Introduction

2. The gluophilic Z' portal

3. Conclusions

Conclusions

- The freeze-in is an appealing mechanism for dark matter genesis, and is testable in some scenarios
- Gluophilic Z' portal:
 - FIMP self-annihilation in dSphs can produce detectable γ -rays
 - Proton-proton collisions at the LHC can produce FIMPs in association with mono-jet signals
 - The LHC Run 3 might find hints of FIMPs!

Backup slides

The simplified Z' portal

C. Cosme, MD, S. Godfrey, T. Gray arXiv:2104.13937

The gluophilic Z' portal

$$\frac{\Omega h^2}{0.12} \approx \left(\frac{76}{g_{\text{eff}}}\right)^{3/2} \left(\frac{N_{\Psi}}{3}\right)^2 \left(\frac{g_{Z'}}{1}\right)^4 \left(\frac{m_{\chi}}{7.6\text{GeV}}\right)^3 \left(\frac{1.4\text{TeV}}{M}\right)^4 \left(\frac{1\text{TeV}}{m_{Z'}}\right)^4 \left(\frac{T_{\text{RH}}}{1\text{GeV}}\right)^5 \left[1 + 8.13 \left(\frac{T_{\text{RH}}}{1\text{GeV}}\right)^2 \left(\frac{7.6\text{GeV}}{m_{\chi}}\right)^2\right]$$

The gluophilic Z' portal

If $A_{\gamma} \neq 0$, perturbative unitarity can be violated @ high energies F. Kahlhoefer, K. Schimidt-Hoberg, T. Schweitzer, S. Vogl arXiv:1510.02110 $\sum_{z'} \sum_{k' \neq z'} \sum_{\chi'} \otimes k \to \infty \qquad \longrightarrow \qquad m_{Z'} \gtrsim \sqrt{2/\pi} A_{\chi} m_{\chi}$ $\frac{k}{\chi_{1}} = \frac{z_{1}}{\omega_{1}}$ New particle restoring unitarity $M_X < \frac{\pi}{A_{\gamma}^2} \frac{m_{Z'}^2}{m_{\gamma}}$

Simplified Z' portals are more natural in the freeze-in regime

The gluophilic Z' portal

Correct relic density via freeze-in for a wide range of m_{DM} with $M_{Z'}$ and Λ at intermediate GUT scales

DM genesis - freeze-out

Evolution of weakly interacting massive particles (WIMPs) in the early universe:

Early matter era

Daniel Baumann, Cosmology Part III

inflation	early radiation-dominatted (ERD) era	early matter-dominatted (EMD) era	entropy production (EP) or reheating period	radiati	on-dominated era (standard)	
T_R	н 7	Γ_i T	ו פ	T_r	T_{BBN}	time

Early matter era

