A Consideration of NOvA Cross Sections

Maria Martinez-Casales

August 31, 2022 **CIPANP 2022**

IOWA STATE UNIVERSITY

NuMI Off-axis Ve Appearance

- Long-baseline neutrino experiment with Near Detector (ND) at Fermilab and a baseline of 810km.
- The main physics goal is measuring 3flavor neutrino oscillation parameters by observing ν_e appearance / ν_μ disappearance at the Far Detector (FD).

Yesterday's talk from **Denver Whittington**

NuMI Off-axis Ve Appearance

Predicting Far Detector Spectrum

- The extraction of oscillation parameters depends on neutrino energy reconstruction.
- The predicted energy spectrum in the FD is extrapolated from the ND spectrum depending on our understanding and modeling of:
 - Neutrino flux
 - Neutrino cross sections
 - Detector response

$$R_{ND}(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \sigma(E_{\nu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \sigma(E_$$

 $(E_{\nu}, A) \times \epsilon_{ND}$ Extract oscillation parameters $(E_{\nu}, A) \times \epsilon_{FD} \times P_{osc}$

Predicting Far Detector Spectrum

 The extraction of oscillation parameters depends on neutrino energy reconstruction.

Sam Zeller, Low Energy Neutrino Cross Sections, NuFact 06/10/03

- spectrum depending on our understanding and modeling of:
 - Neutrino flux
 - Along the way, pointowwell have good a sured converses $\nu \sigma's?$
 - Rely on past measurements for this knowledge
 Neutrino cross sections
 Sections
 Neutrino cross sections theoretical understanding is
 - Review the status of past
 - Detector respectively of $\sigma_{\nu Review the status of past}$ $E_{\nu} \sim 1 \text{ GeV}$: measurements of σ_{ν} at $E_{\nu} \sim 1 \text{ GeV}$:

 \hookrightarrow Quasi-elastic scattering elastic scattering W^+

 \hookrightarrow Resonance production (CC and NC single π)

$$R_{ND}(\nu_{\mu}) = \Phi$$

small σ but can feed down)

Int π production

 \hookrightarrow Multi π production (small σ but can feed down)

 $\hookrightarrow \nu$ production of strange

and NC single

• The predicted energy spectrum in the FD is extrapolated from the ND ge

Rely on past measuremener this knowledgeents

Predicting Far Detector Spectrum

- The extraction of oscillation parameters depends on neutrino energy reconstruction.
- The predicted energy spectrum in the FD is extrapolated from the ND spectrum depending on our understanding and modeling of:
 - Neutrino flux
 - Neutrino cross sections
 - Detector response

$R_{ND}(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{ND}$

Neutrino interactions

• Neutrino interactions are simulated using the GENIE v3.0.6

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Multinucleon interactions

Meson Exchange Current (MEC/2p2h) Valencia 2p2h arXiv:1102.2777

Interactions with the nuclear environment

Final State Interactions (FSI) hN Semi Classical Cascade doi.org/10.1063/1.3274190

Neutrino interactions

• Neutrino interactions are simulated using the GENIE v3.0.6

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Multinucleon interactions

Meson Exchange Current (MEC/2p2h) Valencia 2p2h arXiv:1102.2777

Interactions with the nuclear environment

Final State Interactions (FSI) hN Semi Classical Cascade doi.org/10.1063/1.3274190

Custom adjustment to NOvA ND data.

Fit to external pion scattering data.

Final State Interactions

- Nucleons and pions reinteract when propagated through the nucleus.
- For 2020 oscillation results, we used the hN2018 semi-classical cascade FSI model in GENIE 3.0.6.

M.Martinez-Casales

- Pion scattering data is categorized into the topological channels based on the outgoing particles.
- Agreement with ¹²C data is poor.

Final State Interactions

- Total "reactive" cross section
 - REAC = ABS + CX + QE +other processes
- Adjustments:
 - "fate fractions" for these 3 channels
 - Mean Free Path (MFP), which scales inversely with cross section.

- After the tuning, four uncorrelated uncertainties are constructed.
- Three uncorrelated uncertainties of the "fate fractions".
- The MFP uncertainty is constructed with the values of this parameter that bracket the external data.

Multi-nucleon interactions

- Binding between a nucleon pair can occur via exchange of virtual mesons. Nucleons inside the nuclei form correlated pairs. ν scattering knocks out the pair.
- This interaction type is not fully understood and no model correctly predicts the observed data at the Near Detector
 - We adjust Valencia MEC to NOvA ND data
- Adjustment reshapes MEC kinematics to match data, effectively adding missing processes (like short range correlations between nucleons), so we call it NOvA 2p2h.

12

Adjustment of 2p2h interactions

- Projections on the reconstructed q₀ and |q| axes before MEC adjustment.
- Colors represent the interaction types.

40

30

Events 50

10⁴

CIPANP 2022

NOvA Preliminary

Adjustment of 2p2h interactions

- the base model.
- simulation.

Adjustment of 2p2h interactions

- Projections on the reconstructed q₀ and |q| axes after MEC adjustment.
- Agreement considerably • better, but this tuning is unable to correct all of the phase space.

2p2h systematics

- The NOvA 2p2h tune assumes that this is the only piece of the model that is deficient.
- It is absorbing the possibility that other cross section parameters in the model need adjustment.
- The uncertainties take this into account by performing two alternate versions of the 2p2h weights.

Reco E_{had, vis} (GeV)

QE-enhanced distorted simulation

RES-enhanced distorted simulation

- The NOvA 2p2h tune assumes that this is the only piece of the model that is deficient.
- It is absorbing the possibility that other cross section parameters in the model need adjustment.
- The uncertainties take this into account by performing two alternate versions of the 2p2h weights.

2p2h tune systematics

17

Additional MEC uncertainties

• Theory based uncertainties

- Neutrino energy dependent normalization uncertainty.
- Parametrized as two functions that ulletencapsulate the difference between Valencia MEC and alternate models.

$$\nu \quad \frac{np}{np+nn} = 0.69 \begin{cases} +0.15\sigma \\ -0.05\sigma \end{cases},$$

$$\overline{\nu} \qquad \frac{np}{np+pp} = 0.66 \begin{cases} +0.15\sigma \\ -0.05\sigma \end{cases}$$

 A function to take into account the ratio of struck nucleons pairs.

CIPANP 2022

NOvA tune and uncertainties

- Central value agreement is good after FSI and MEC adjustments.
- Cross section uncertainties include custom MEC, FSI in addition GENIE uncertainties.
- These are adequate to take into account remaining differences.

NOvA Preliminary

NOvA Preliminary

Future plans

- The ND high statistics dataset is rich in information potentially useful to constrain interaction model uncertainties:
 - subdivide into topological categories that separate MEC from other pieces of the model to expose deficiencies,
 - simultaneously fit of MEC and other neutrino interaction parameters using 5 samples to obtain a more robust tuning to our data,
 - fitting framework in progress with both frequentist and Bayesian methods.

NOvA Preliminary

Future plans

- The ND high statistics dataset is rich in information potentially useful to constrain interaction model uncertainties:
 - subdivide into topological categories that separate MEC from other pieces of the model to expose deficiencies,
 - simultaneously fit of MEC and other neutrino interaction parameters using 5 samples to obtain a more robust tuning to our data,
 - fitting framework in progress with both frequentist and Bayesian methods.

- Samples defined by the number and type of particles identified in the detector:
 - muons, protons, charged pions or other.

Topology samples for ND fit

different interaction types

- μ and μ +P samples \bullet contain mostly interactions without pions.
- **NOvA Simulation** MEC μ QE RES 20 DIS 0⁴ Events Other 0.6 Reco E_{had, vis} (GeV) MEC $\mu + 1\pi^{\pm} + nX$ QE RES DIS 10⁴ Events Other 0.4 0.6 Reco E_{had, vis} (GeV)
- **μ+π+X** sample has a high purity of interactions with one charged pion.

• The samples are effective at separating different amounts of true final states and in separating

µ+P+X contains a large fraction of interactions with multiple pions that are not visible.

Summary

- NOvA uses GENIE 3.0.6 model with custom adjustments.
- The cross section model needs improvement to describe NOvA data, so we adjust central value:
 - FSI is tuned with external data
 - MEC is tuned using our own ND data
 - Uncertainties are constructed to take into account remaining discrepancies
- ND has a rich dataset useful for improvements in constraining neutrino interaction modeling. New work in progress toward including all cross section systematic uncertainties while adjusting MEC.

The NuMI Beam

- +(-)Charged pions and kaons Two highly active scintillator detectors: are focused by a magnetized Far Detector: 14 kT on surface horns and decay into (antipredetense: 300 T, 105 m underground
- The NOVA detectors are off-axis 14 mrad off-axis narrowly peaked muon by 14 mrad off-axis narrowly peaked muon by 14 mrad off-axis narrowly peaked muon spectrum with a peak at ~2GeV, near the oscillation maximum.

 - V_e appearance channel: mass hierarchy, δ_{CP} , θ_{13} , θ_{23} and octant degeneracy CIPANP 2022

M.Martinez-Casales

- 120 GeV protons from the Main
 - Injectoofikasgrappite targete
 - producing a showlet of mesons. in the NuMI beam

M.Martinez-Casales

- Extruded PVC cells filled with liquid scintillator arranged in alternating planes.
- Light is product charged particl -300 through the cel
- The light is colle[×] a wavelength sł -500 fiber and transp -100an Avalanche P Diode (APD), wł -200 amplifies the si >-300

M.Martinez-Casales

-400

Near to Far extrapolation

Identical detectors Concept: share all the ingredients except the oscilliations

<u>Correct the true event rate</u> (Φ×σ×...) using the ND and propagate that (F/N captures geometrical differences between detectors)

FSI fate fraction and MFP uncertainties

Subdividing the ND dataset

- We have developed 10 non-overlapping samples (5 for neutrino and 5 for
- protons, charged pions or other.

antineutrino), defined by the number and type of prongs visible in the detector.

The prongs are classified according to a convolutional neutral network as muons,

- $\mu + \pi + X$ sample has a high purity of interactions with one charged pion.

True final states in ND simulation

NOvA Simulation

- **µ+P+X** contains a large fraction of interactions with multiple pions.
- The remaining sample contains a mixture of all the categories.
- These are also dominated by Resonance and Deep-Inelastic Scattering interactions.

