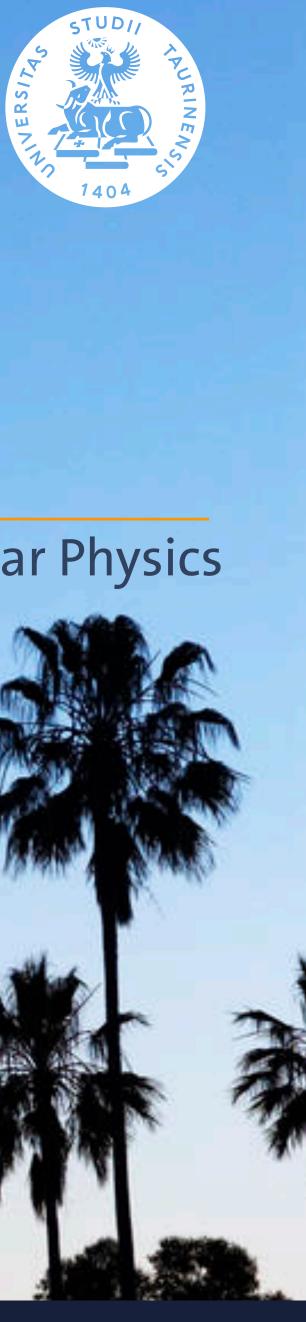


Universität Zürich^{uzH}

Inclusive semileptonic B decays on the lattice

Sandro Mächler University of Turin University of Zurich

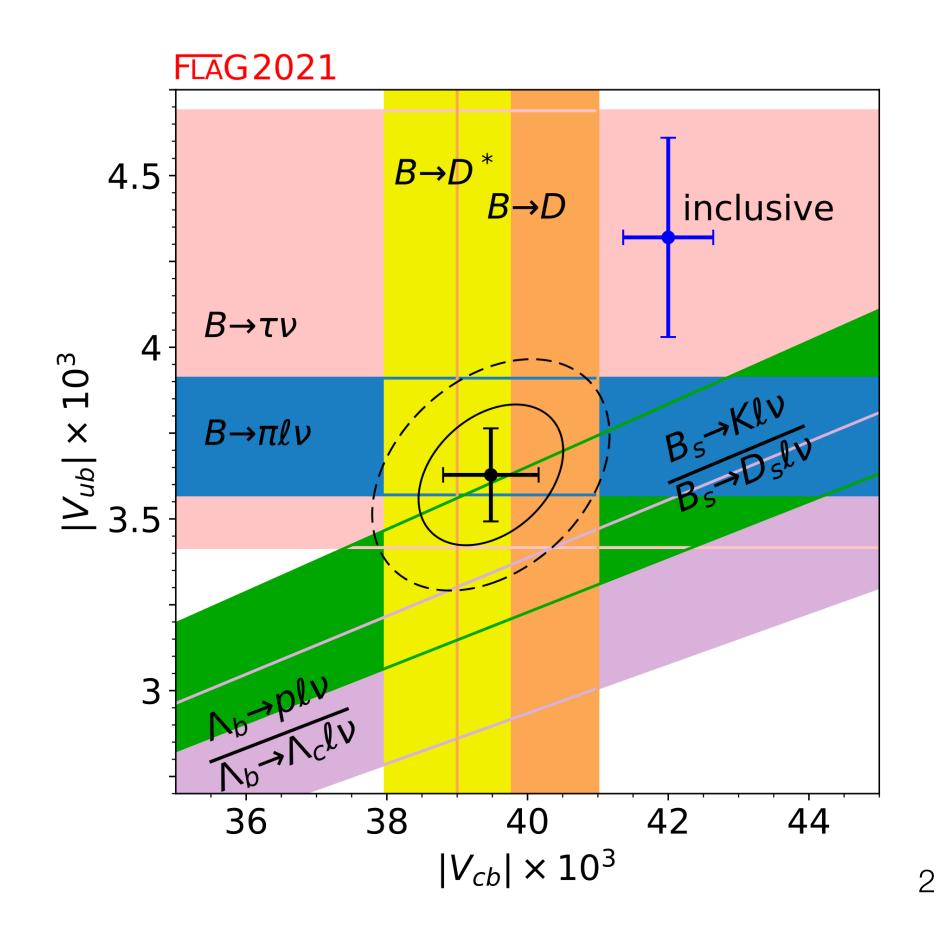
Based on P. Gambino, S. Hashimoto, SM, M. Panero, F. Sanfilippo, S. Simula, A. Smecca and N. Tantalo, arXiv:2203.11762



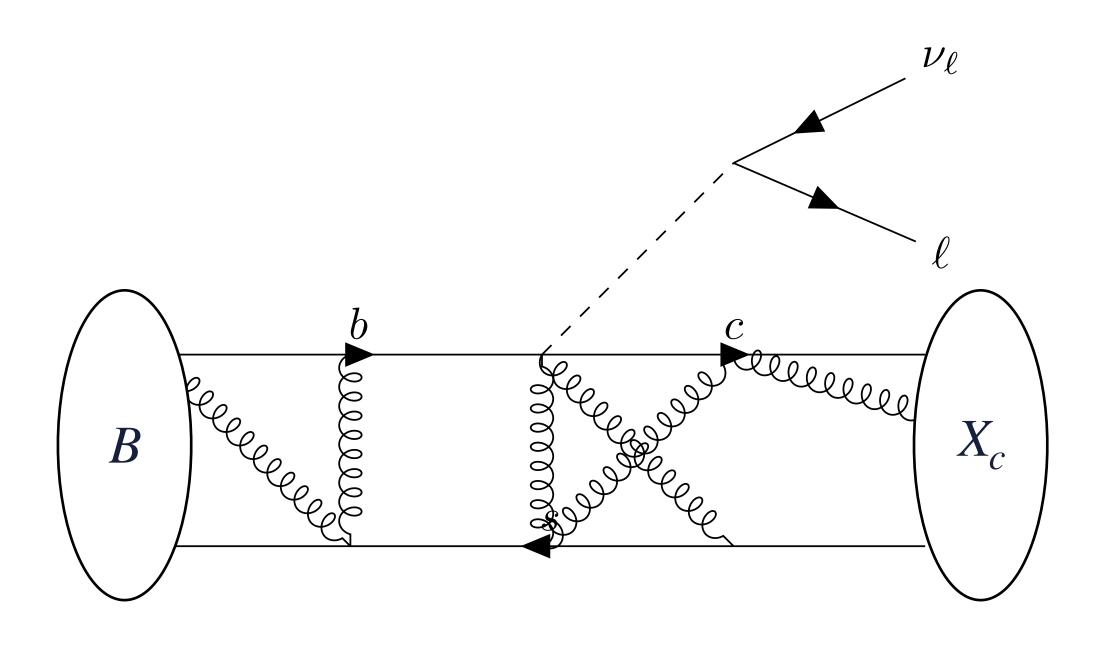
14th Conference on the Intersections of Particle and Nuclear Physics

$$\begin{vmatrix} V_{cb}^{\text{incl}} \\ = (42.00 \pm 0.64) \, 10^{-3} \\ \sim 3\sigma \\ \begin{vmatrix} V_{cb}^{\text{excl}} \\ \end{vmatrix} = (39.16 \pm 0.67) \times 10^{-3} \end{aligned}$$
[FLAG 2021]

There is a long-standing discrepancy between inclusive and exclusive determinations of V_{ch}



Inclusive *B* decays



Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

We consider the inclusive decay $B \to X_c \ell \nu_{\ell'}$

Inclusive decays are independent of the final state. Through an OPE short and long distance QCD effects are separated.

З

 $\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\mathbf{q}^{2}\mathrm{d}\omega\mathrm{d}E_{\ell}} =$

which contain the leptonic and the **non-perturbative** hadronic dynamics, respectively.

After integrating over E_{ℓ} we can write the total decay rate as

$$\Gamma = \frac{G_{\rm F}^2 \left| V_{cb} \right|^2}{24\pi^3} \int_0^{\mathbf{q}_{\rm max}^2} d\mathbf{q}^2 \sqrt{\mathbf{q}^2} \int_{\boldsymbol{\omega}_{\rm min}}^{\boldsymbol{\omega}_{\rm max}} d\boldsymbol{\omega} X\left(\boldsymbol{\omega}, \mathbf{q}^2\right)$$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

The triple differential decay rate can be factorized as into a leptonic and hadronic tensor as

$$= \frac{G_{\rm F}^2 \left| V_{cb} \right|^2}{8\pi^3} L_{\mu\nu} W^{\mu\nu}$$

The hadronic tensor is given by

$$W^{\mu\nu} = \sum_{X_c} (2\pi)^3 \,\delta^{(4)} \left(p - q - r\right) \frac{1}{2E}$$

with

$$J^{\mu} = \overline{c}\gamma^{\mu} \left(1 - \gamma_5\right) b = V^{\mu} - A^{\mu}$$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

$\frac{1}{E_{R}(\mathbf{p})}\left\langle \overline{B}(\mathbf{p})\left|J^{\mu\dagger}\right|X_{C}(\mathbf{r})\right\rangle\left\langle X_{C}(\mathbf{r})\left|J^{\nu}\right|\overline{B}(\mathbf{p})\right\rangle$

Through an OPE we can express it in terms of *B* meson matrix elements of local operators.

Then general inclusive observables are smeared differential distributions, given by a double series in λ_{OCD}/m_b and α_s

$$M_{i} = M_{i}^{(0,0)} + \frac{\alpha_{s}}{\pi} M_{i}^{1} + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(M_{i}^{\pi,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(\pi,1)} \right) + \frac{\mu_{G}^{2}}{m_{b}^{2}} \left(M_{i}^{G,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(G,1)} \right) + \frac{\mu_{G}^{2}}{m_{b}^{2}} \left(M_{i}^{G,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(G,1)} \right) + \frac{\mu_{G}^{2}}{m_{b}^{2}} \left(M_{i}^{G,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(G,1)} \right)$$

expressed in terms of perturbative Wilson coefficients and non-perturbative matrix elements,

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Then general inclusive observables are smeared differential distributions, given by a double series in λ_{OCD}/m_b and α_s

$$\begin{split} M_{i} &= M_{i}^{(0,0)} + \frac{\alpha_{s}}{\pi} M_{i}^{1} + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(M_{i}^{\pi,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(\pi,1)} \right) + \frac{\mu_{G}^{2}}{m_{b}^{2}} \left(M_{i}^{G,0} + \frac{\alpha_{s}}{\pi} M_{i}^{(G,1)} \right) \\ &+ \frac{\rho_{D}^{3}}{m_{b}^{3}} M_{i}^{(D,0)} + \frac{\rho_{LS}^{3}}{m_{b}^{3}} M_{i}^{(LS,0)} + \cdots, \end{split}$$

expressed in terms of perturbative Wilson coefficients and non-perturbative matrix elements, for instance

$$\mu_{\pi}^{2} = \frac{1}{m_{B}} \left\langle B \left| \overline{b}_{v} (i \vec{D})^{2} b_{v} \right| B \right\rangle,$$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

$$\mu_G^2 = \frac{1}{m_B} \left\langle B \left| \overline{b}_v \frac{i}{2} \sigma_{\mu\nu} G^{\mu\nu} b_v \right| B \right\rangle.$$

- The non-perturbative parameters μ_{π} , μ_{G} , ρ_{D} , ρ_{LS} and quark masses m_{h} , m_{c} are **crucial** input parameters and extracted from experimental data.
- \rightarrow A fully non-perturbative computation of inclusive observables as proposed in 2005.13730 would provide a check of the OPE.
 - **Idea:** Treat lattice simulations as a virtual laboratory to probe the non-perturbative dynamics.

Let us go back to the total decay width

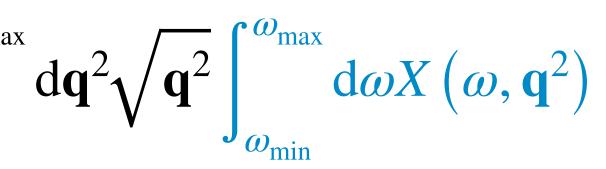
$$\Gamma = \frac{G_{\rm F}^2 \left| V_{cb} \right|^2}{24\pi^3} \int_0^{\mathbf{q}_{\rm ma}^2}$$

The ω -integral, \overline{X} , is our gateway to compute Γ on the lattice. It is of the form

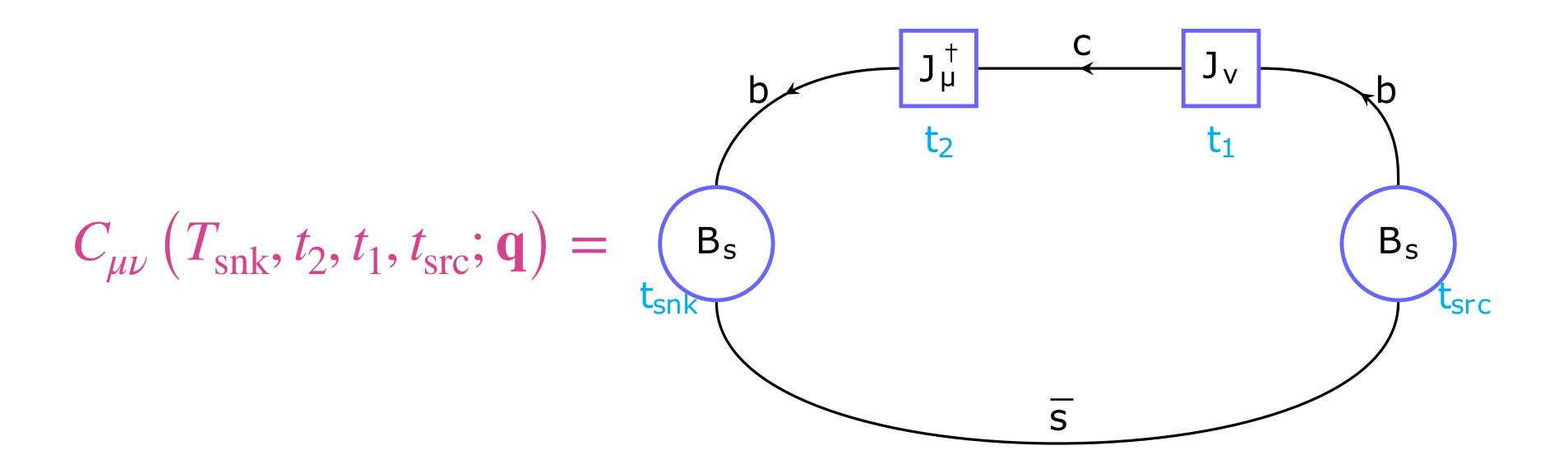
 $\overline{X} = \int_{\omega_{\min}}^{\omega_{\max}} d\omega \quad k_{\mu\nu} \quad \times \underline{W}^{\mu\nu}$

As expected we need a non-perturbative computation of the hadronic tensor.

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022



However, $W_{\mu\nu}$ cannot be computed directly. Instead it is **linked** to the 4-point correlator $C_{\mu\nu}$ below:



[Gambino, Hashimoto, 2005.13730]

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

by the simple relation

 $C_{\mu\nu}(t;\mathbf{q})$

We remember that \overline{X} is given by

$$\overline{X} = \int_{\omega_{\min}}^{\omega_{\max}} d\omega k_{\mu\nu} (\mathbf{q}, \omega) \times W^{\mu\nu} = \int_{\omega_{\min}}^{\infty} d\omega W^{\mu\nu} \underbrace{k_{\mu\nu} (\mathbf{q}, \omega) \theta (\omega_{\max} - \omega)}_{\text{kernel operator}}$$
$$= \int_{\omega_{\min}}^{\infty} d\omega W^{\mu\nu} K_{\mu\nu} (\mathbf{q}, \omega)$$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

It turns out that in a finite volume the 4-point function $C_{\mu\nu}$ is related to the hadronic tensor $W_{\mu\nu}$

$$= \int_{0}^{\infty} \mathrm{d}\omega W_{L,\mu\nu}\left(\omega,\mathbf{q}\right) e^{-\omega t}$$

The remaining problem is to find a relation between

$$C_{\mu\nu}\left(t;\mathbf{q}\right) = \int_{0}^{\infty} \mathrm{d}\omega W_{L,\mu\nu}\left(\omega,\mathbf{q}\right) e^{-\omega t} \stackrel{?}{\longleftrightarrow} \int_{\omega_{\min}}^{\infty} \mathrm{d}\omega W^{\mu\nu} K_{\mu\nu}\left(\mathbf{q},\omega\right) = \overline{X}$$

Idea: We can approximate any smooth function $K_{\mu\nu}(\omega)$ as

 $K^{\mu\nu}(\alpha$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

$$\omega) = \sum_{\tau} g_{\tau}^{\mu\nu} e^{-\omega\tau}.$$

The remaining problem is to find a relation between

$$C_{\mu\nu}\left(t;\mathbf{q}\right) = \int_{0}^{\infty} \mathrm{d}\omega W_{L,\mu\nu}\left(\omega,\mathbf{q}\right) e^{-\omega t} \stackrel{?}{\longleftrightarrow} \int_{\omega_{\min}}^{\infty} \mathrm{d}\omega W^{\mu\nu} K_{\mu\nu}\left(\mathbf{q},\omega\right) = \overline{X}$$

Idea: We can approximate any smooth function $K_{\mu\nu}(\omega)$ as

 $K^{\mu\nu}(a)$

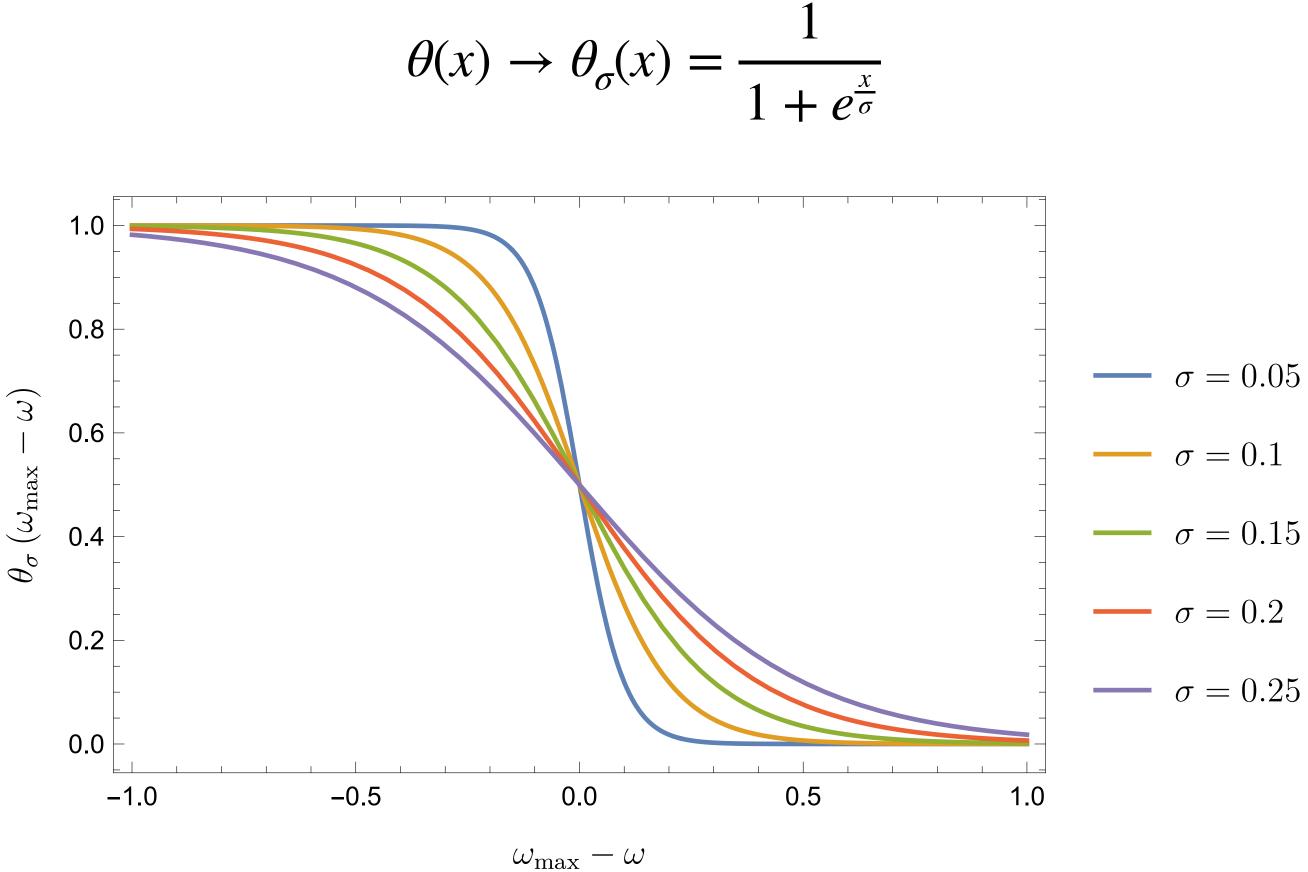
But the kernel above is **not smooth** at all!

 \rightarrow We need to introduce a **smeared** kernel!

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

$$\omega) = \sum_{\tau} g_{\tau}^{\mu\nu} e^{-\omega\tau}.$$

We replace the θ -function with a smeared version:



Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Finally we have all the ingredients to compute inclusive observables on the lattice!

$$\lim_{\sigma \to 0} \lim_{V \to 0} \sum_{\tau} g_{\tau,\mu\nu} C^{\mu\nu}(t;\mathbf{q}) = \lim_{\sigma \to 0} \int_0^\infty \mathrm{d}\omega W^{\mu\nu}(\omega,\mathbf{q}) k_{\mu\nu}(\mathbf{q},\omega) \theta_\sigma(\omega_{\max}-\omega)$$

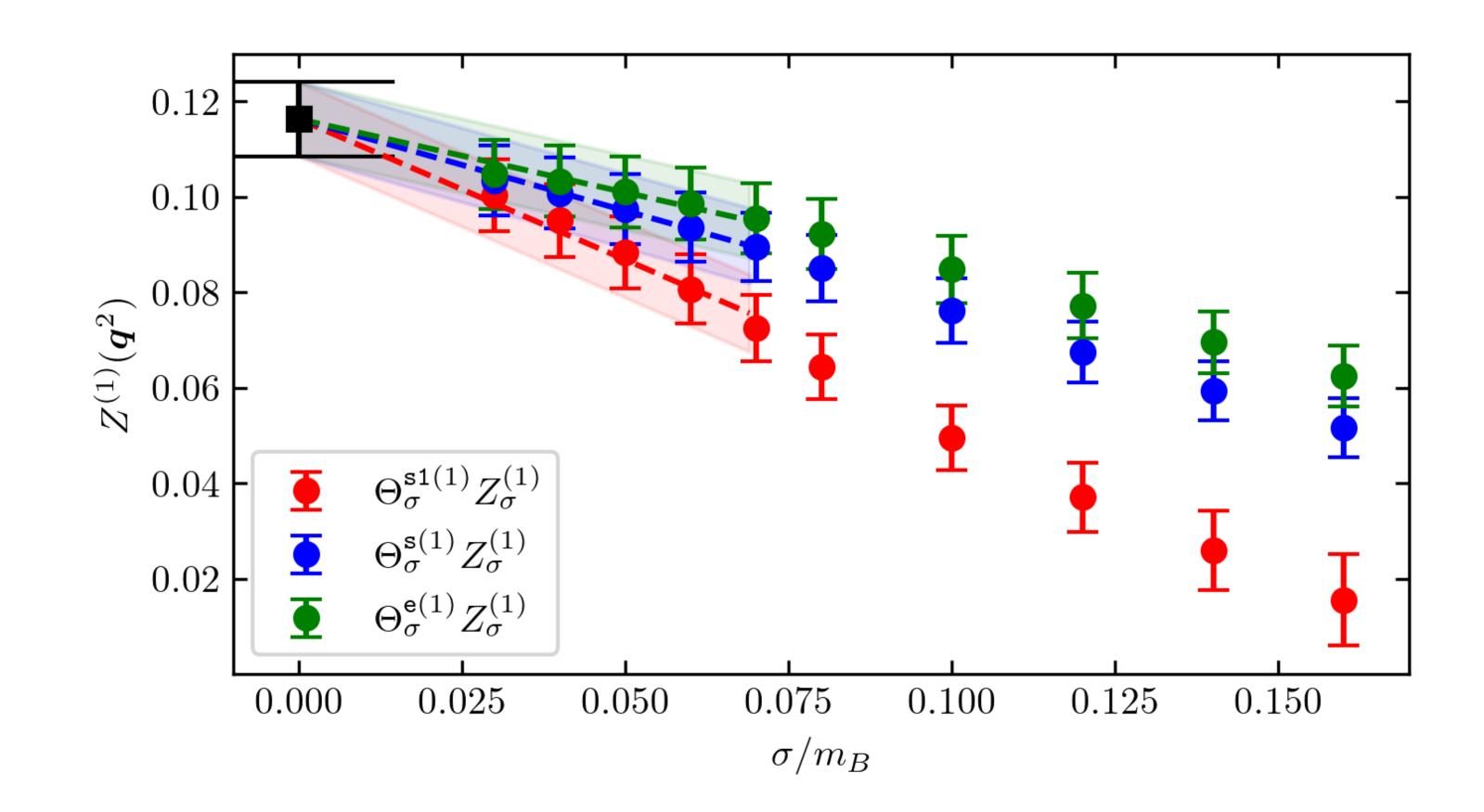
So in order to compute the total decay rate on the lattice, one has to

- Approximate the smooth kernel
- Take the infinite volume limit
- Extrapolate to the original kernel

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

- Evaluate the 4-point correlator on the lattice - Replace the kernel $K_{\mu
u}$ with a smooth function

Extrapolation to $\sigma = 0$



Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

JLQCD

Uses DWF QCD action with $N_f = 2 + 1$ sea quarks

Single (!) Lattice spacing: a = 0.055 fm

Quark masses: $m_c = m_c^{\text{phys}}$

 $m_{b} = 2.44m_{c}$

Unphysically light B_s meson mass: $M_{B_s} \approx 3.45$ GeV

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Lattice calculation

ETMC

Uses Twisted Mass QCD action with $N_f = 2 + 1 + 1$ sea quarks

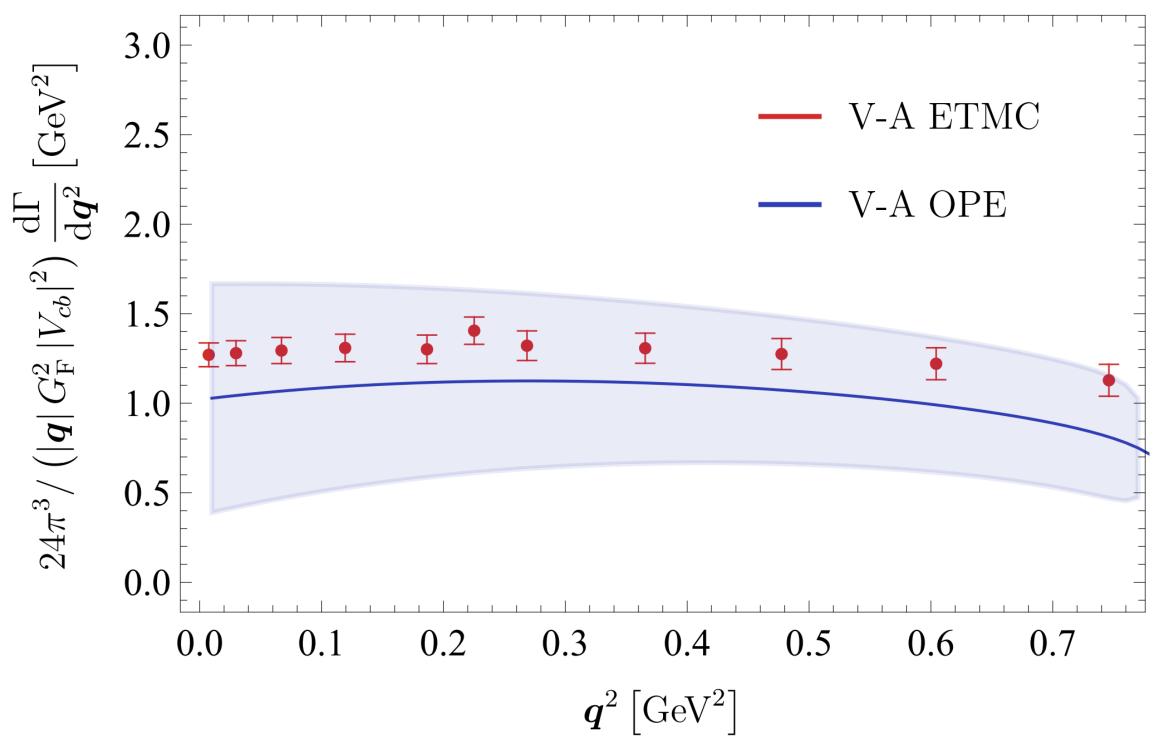
Single (!) Lattice spacing: a = 0.0815(30) fm

Quark masses: $m_c^{\text{phys}} = 1176(39) \text{ MeV}$ $m_b = 2m_c$

Unphysically light B_s meson mass: $M_{B_s} \approx 3.08(11)$ GeV

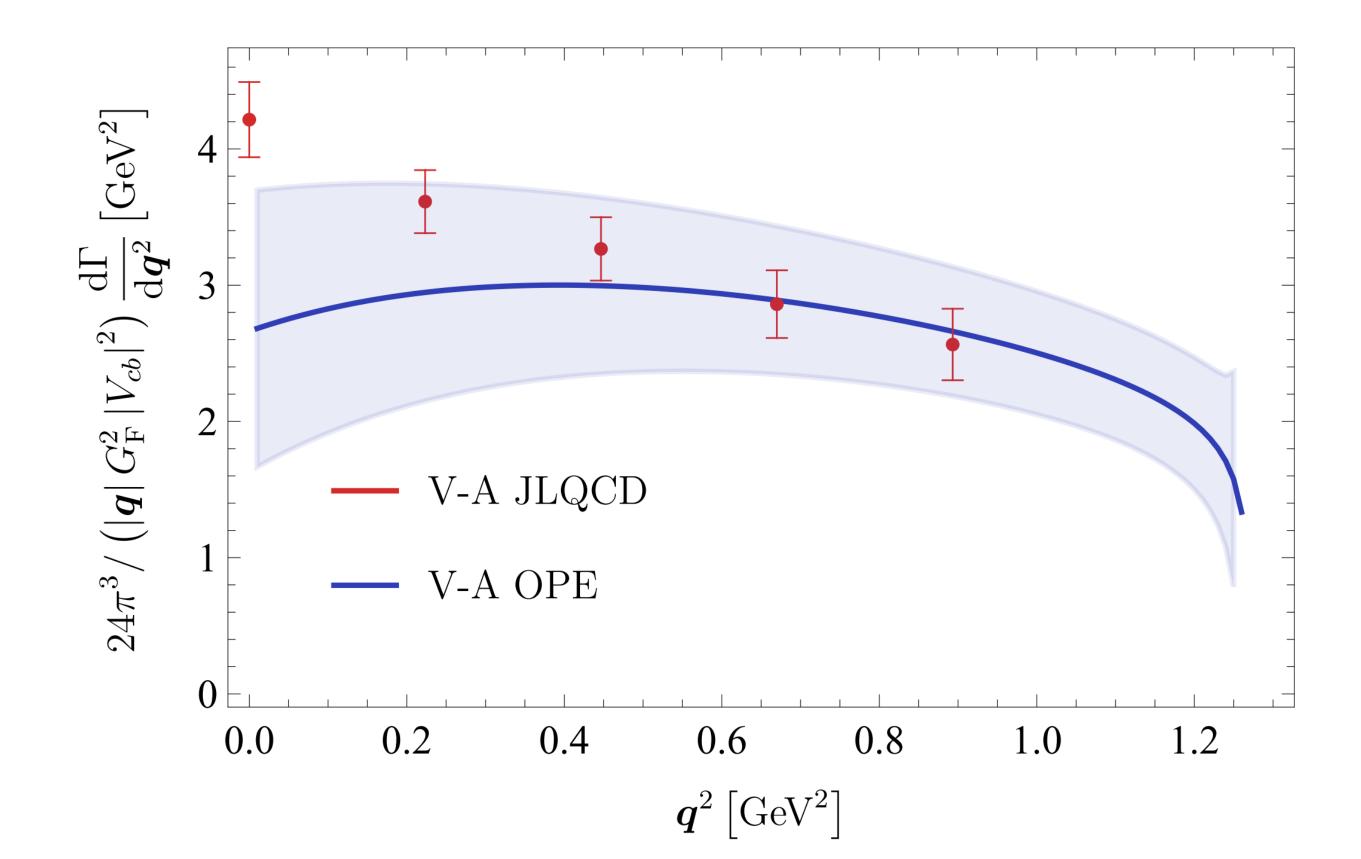
We performed two OPE calculations, for JLQCD and ETMC kinematics.

Including corrections up to $O\left(\Lambda_{\rm QCD}/m_b^3\right)$ and $O\left(\alpha_s\right)$ we find an excellent agreement between lattice and OPE:



Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Results



Results

\mathbf{q}^2 -spectrum for JLQCD kinematics:

OPE uncertainties cancel in ratios of observables \rightarrow define differential moments

Hadronic invariant mass moments

 $\int \mathrm{d}\omega \mathrm{d}E$ $H_n\left(\mathbf{q}^2\right) = -----$

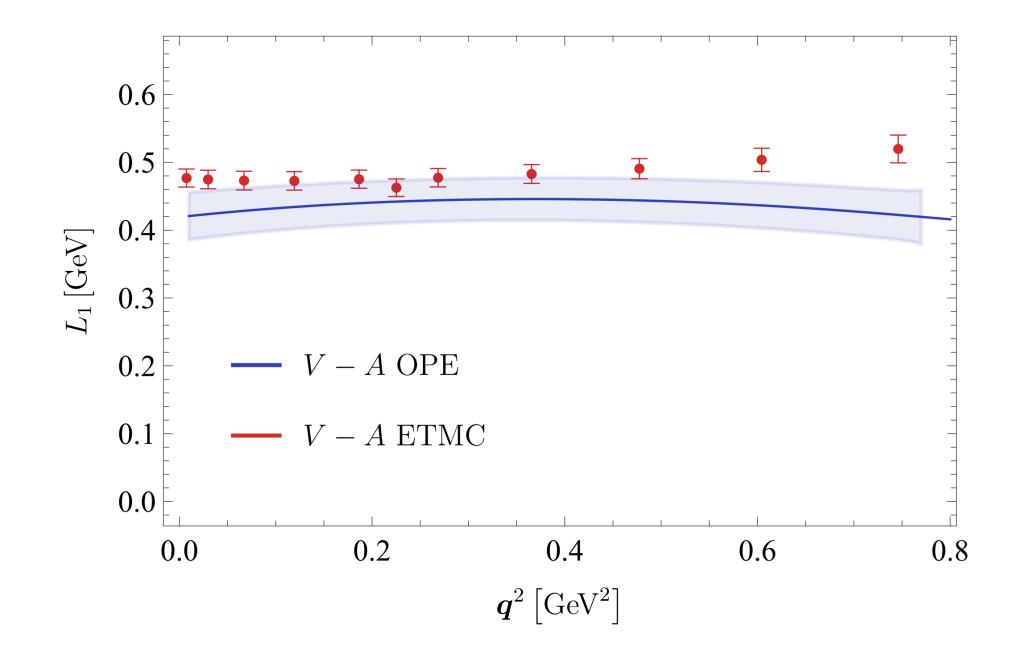
Lepton energy moments

$$L_{n_{\ell}}(\mathbf{q}^{2}) = \frac{\int d\omega dE_{\ell} E_{\ell}^{n_{\ell}} \left[\frac{d\Gamma}{d\mathbf{q}^{2} d\omega dE_{\ell}} \right]}{\int d\omega dE_{\ell} \left[\frac{d\Gamma}{d\mathbf{q}^{2} d\omega dE_{\ell}} \right]}$$

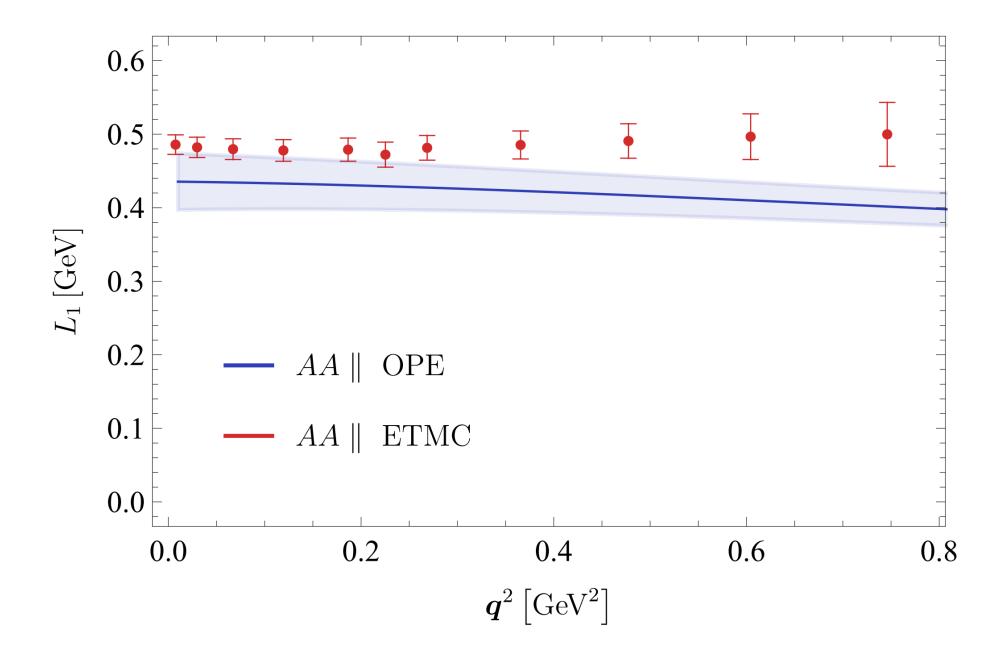
Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Results

$$E_{\ell} \left(\omega^{2} - \mathbf{q}^{2} \right)^{n} \left[\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathbf{q}^{2}\mathrm{d}\omega\mathrm{d}E_{\ell}} \right]$$
$$\int \mathrm{d}\omega\mathrm{d}E_{\ell} \left[\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathbf{q}^{2}\mathrm{d}\omega\mathrm{d}E_{\ell}} \right]$$



Results



 $\Gamma/|V_{cb}^2| \times 10^{13} \text{ (GeV)}$ $\langle E_{\ell} \rangle$ (GeV) $\langle E_\ell^2 \rangle \; (\text{GeV}^2)$ $\langle E_{\ell}^2 \rangle - \langle E_{\ell} \rangle^2 (\text{GeV}^2)$ $\langle M_X^2 \rangle$ (GeV²)

The last thing left to do is to compute the fully integrated moments:

	ETMC	OPE
()	0.987(60)	1.20(46)
	0.491(15)	0.441(43)
	0.263(16)	0.207(49)
)	0.022(16)	0.020(8)
	3.77(9)	4.32(56)

- We have calculated the semileptonic decay rate and moments at unphysical m_h
- Good agreement with the OPE.
- Next steps:
 - *b*-quark masses to perform extrapolations $a \to 0, V \to \infty, m_b \to m_b^{\text{phys}}$.
 - Perform a lattice calculation at different values of lattice spacing, volumes and • Calculation by Southampton group underway, using RBC/UKQCD ensembles • Apply this method to inclusive D-meson decays for direct comparison to
 - experiment.
 - Extend the method to decays like $B \to X_{\mu} \ell \nu_{\ell}$ to extract $V_{\mu b}$.

Thanks for your attention!

Inputs of the OPE calculation

$$m_b^{kin}~(\mathrm{JLQ})$$

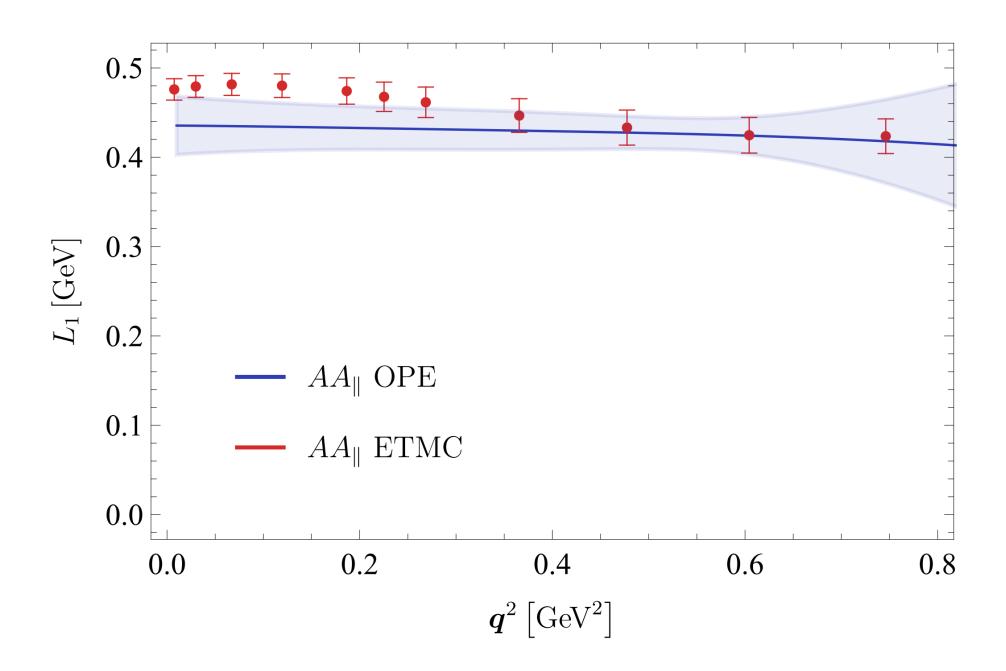
 $\overline{m}_c(2~\mathrm{GeV})~(\mathrm{JLQ})$
 $m_b^{kin}~(\mathrm{ETN})$
 $\overline{m}_c(2~\mathrm{GeV})~(\mathrm{H})$
 μ_{π}^2
 ρ_D^3
 $\mu_G^2(m_b)$
 ρ_{LS}^3
 $\alpha_s^{(4)}(2~\mathrm{GeV})$

Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

Backup

CD)	2.70 ± 0.04
LQCD)	1.10 ± 0.02
MC)	2.39 ± 0.08
ETMC)	1.19 ± 0.04
	0.57 ± 0.15
	0.22 ± 0.06
)	0.37 ± 0.10
	-0.13 ± 0.10
eV)	0.301 ± 0.006

Comparison with smooth kernel (ETMC: $\sigma = 0.12$, JLQCD: $\sigma = 0.1$)



Sandro Mächler — Inclusive B decays on the lattice — CIPANP 2022

