RECENT DEVELOPMENTS IN NUCLEAR PARTON DISTRIBUTION FUNCTIONS

Pit Duwentäster

September 2, 2022

Westfälische Wilhelms-Universität Münster

TABLE OF CONTENTS

- Introduction to nPDFs
- Improvements in methodology
- Updated data sets and new observables
- Conclusions
- Prospects for the future

INTRODUCTION - NUCLEAR PDFs

Nuclear PDFs are more than the sum of their parts, i.e. not just the sum of Z proton PDFs and (A - Z) neutron PDFs.

Pit Duwentäster

NCTEQ15 [Kovarik et al., 1509.00792]

Data: DIS, DY, π^0 production DIS cuts: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$ π_0 cut: $p_T > 1.7 \text{ GeV}$

740 Data points total

NCTEQ15 [Kovarik et al., 1509.00792]

Data: DIS, DY, π^0 production DIS cuts: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$ π_0 cut: $p_T > 1.7 \text{ GeV}$

740 Data points total

Parameterization: CTEQ6 Proton parameterization

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

with A-dependent parameters:

$$c_k(A) = c_{k,0} + c_{k,a}(1 - A^{-c_{k,b}})$$

NCTEQ15 [Kovarik et al., 1509.00792]

Data: DIS, DY, π^0 production DIS cuts: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$ π_0 cut: $p_T > 1.7 \text{ GeV}$

740 Data points total

Parameterization: CTEQ6 Proton parameterization

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

with A-dependent parameters:

$$c_k(A) = c_{k,0} + c_{k,a}(1 - A^{-c_{k,b}})$$

Hessian uncertainties: Tolerance T = 35

Pit Duwentäster

EPPS16

[Eskola et al., 1612.05741]

Data: (ν)DIS, DY, π^0 production, W/Z boson production, dijet production DIS cuts: $Q^2 > m_c^2$, ν DIS cuts: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$

1811 Data points total

EPPS16

[Eskola et al., 1612.05741]

Data: (ν)DIS, DY, π^0 production, W/Z boson production, dijet production DIS cuts: $Q^2 > m_c^2$, ν DIS cuts: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$

1811 Data points total

Parameterization: R_pA based on CT14NLO Proton PDFs

$$R_i^A(x, Q_0^2) = \begin{cases} a_0 + a_1(x - x_a)^2 & x < x_a \\ b_0 + b_1 x^\alpha + b_2 x^{2\alpha} + b_3 x^{3\alpha} & x_a < x < x_b \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & x > x_b \end{cases}$$

EPPS16

[Eskola et al., 1612.05741]

Data: (ν)DIS, DY, π^0 production, W/Z boson production, dijet production DIS cuts: $Q^2 > m_c^2$, ν DIS cuts: $Q^2 > 4 \,\text{GeV}^2$, $W^2 > 12.25 \,\text{GeV}^2$

1811 Data points total

Parameterization: R_pA based on CT14NLO Proton PDFs

$$R_i^A(x, Q_0^2) = \begin{cases} a_0 + a_1(x - x_a)^2 & x < x_a \\ b_0 + b_1 x^\alpha + b_2 x^{2\alpha} + b_3 x^{3\alpha} & x_a < x < x_b \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & x > x_b \end{cases}$$

Hessian uncertainties: Tolerance T = 52

Pit Duwentäster

Comparison between nCTEQ15 and EPPS16

- Very close central values
- Strange quark uncertainty underestimated by nCTEQ15

Pit Duwentäster

Recent NPDFs developments

New methodologies

nNNPDF1.0 [Abdul Khalek et al., 1904.00018] - DIS only nNNPDF2.0 [Abdul Khalek et al., 2006.14629] - (ν) DIS and W/Zproduction nNNPDF3.0 [Abdul Khalek et al., 2201.12363] - to be discussed later

nNNPDF1.0 [Abdul Khalek et al., 1904.00018] - DIS only nNNPDF2.0 [Abdul Khalek et al., 2006.14629] - (ν) DIS and W/Zproduction nNNPDF3.0 [Abdul Khalek et al., 2201.12363] - to be discussed later

- Parameterized as a neural network
- Reduced parameterization bias
- NNPDF3.1 proton as boundary condition

nNNPDF1.0 [Abdul Khalek et al., 1904.00018] - DIS only nNNPDF2.0 [Abdul Khalek et al., 2006.14629] - (ν) DIS and W/Zproduction nNNPDF3.0 [Abdul Khalek et al., 2201.12363] - to be discussed lat.

nNNPDF3.0 [Abdul Khalek et al., 2201.12363] - to be discussed later

- Parameterized as a neural network
- Reduced parameterization bias
- NNPDF3.1 proton as boundary condition

nNNPDF1.0 [Abdul Khalek et al., 1904.00018] - DIS only nNNPDF2.0 [Abdul Khalek et al., 2006.14629] - (ν) DIS and W/Zproduction nNNPDF2.0 [Abdul Khalek et al., 2201.12363] - to be discussed lat

nNNPDF3.0 [Abdul Khalek et al., 2201.12363] - to be discussed later

- Parameterized as a neural network
- Reduced parameterization bias
- NNPDF3.1 proton as boundary condition

Uncertainties: 250 Monte-Carlo replicas

SRC PARAMETERIZATION

[Kusina et al., Presented at DIS2022]

Parameterization inspired by nuclear physics:

$$f_i^A(x,Q_0) = Z/A \left[(1-z_A) f_{i/p}(x,Q_0) + z_A f_{i/p}^{SRC}(x,Q_0) \right] + N/A \left[(1-n_A) f_{i/n}(x,Q_0) + n_A f_{i/n}^{SRC}(x,Q_0) \right]$$

SRC PARAMETERIZATION

[Kusina et al., Presented at DIS2022]

Parameterization inspired by nuclear physics:

$$f_i^A(x,Q_0) = Z/A \left[(1-z_A) f_{i/p}(x,Q_0) + z_A f_{i/p}^{SRC}(x,Q_0) \right] + N/A \left[(1-n_A) f_{i/n}(x,Q_0) + n_A f_{i/n}^{SRC}(x,Q_0) \right]$$

Fitted n_A and z_A values suggest that equal numbers of protons and neutrons participate in SRC pairs

Known from nuclear physics: pn pairs dominant SRC contribution

PIT DUWENTÄSTER

RECENT NPDFS DEVELOPMENTS

NNLO THEORY CALCULATIONS

nNNPDF1.0 and TUJU19 [Walt et al., 1908.03355], TUJU21 [Helenius et al., 2112.11904]

Current status: NNLO improvemes fits, but excludes too many valuable datasets where NNLO theory is not available

Pit Duwentäster

10 / 23

PROTON PDF DEPENDENCE EPPS21 [Eskola et al., 2112.12462]:

PROTON PDF DEPENDENCE EPPS21 [Eskola et al., 2112.12462]:

PROTON PDF DEPENDENCE EPPS21 [Eskola et al., 2112.12462]:

Proton PDF uncertainties are still small, but increasingly relevant

PIT DUWENTÄSTER

Recent NPDFs developments

11 / 23

New data

W AND Z BOSON PRODUCTION

nCTEQ15WZ [Kusina et al., 2007.09100], EPPS21, nNNPDF2.0 [Abdul Khalek et al., 2006.14629]

Sensitivity to strange quark PDFs and gluon PDFs

W AND Z BOSON PRODUCTION

nCTEQ15WZ [Kusina et al., 2007.09100], EPPS21, nNNPDF2.0 [Abdul Khalek et al., 2006.14629]

Sensitivity to strange quark PDFs and gluon PDFs

(b) $\sqrt{s} = 8.16$ TeV PIT DUWENTÄSTER

Recent NPDFs developments

13 / 23

SINGLE INCLUSIVE (LIGHT) HADRON PRODUCTION

nCTEQ15WZ+SIH [Duwentäster et al., 2105.09873]

- RHIC neutral pions were already used in nCTEQ15 and EPPS16, but not LHC data, kaons and charged pions
- Investigation of FF dependence

SINGLE INCLUSIVE (LIGHT) HADRON PRODUCTION

nCTEQ15WZ+SIH [Duwentäster et al., 2105.09873]

- RHIC neutral pions were already used in nCTEQ15 and EPPS16, but not LHC data, kaons and charged pions
- Investigation of FF dependence


```
See next talk for details
```

DIJETS

EPPS21, nNNPDF3.0

- \blacktriangleright Sensitive to (valence)-quark and gluon PDFs between $10^{-3} < x < 0.4$ at high Q^2
- Prefers strong low-x shadowing

D^0 MESONS

EPPS21, nNNPDF3.0, nCTEQ15HQ [Duwentäster et al., 2204.09982]

- Sensitive to the gluon PDFs at very low x
- ► 3 Different methods:
 - EPPS21: R_{pPb} ; calculation in GMVFNS
 - nNNPDF3.0: R_{pPb}; POWHEG+PYTHIA8; Reweighting
 - nCTEQ15HQ: $\frac{d\sigma}{dp_T dy}$; Data-driven approach

D^0 MESONS

EPPS21, nNNPDF3.0, nCTEQ15HQ [Duwentäster et al., 2204.09982]

- Sensitive to the gluon PDFs at very low x
- 3 Different methods:
 - EPPS21: R_{pPb} ; calculation in GMVFNS
 - ▶ nNNPDF3.0: R_{pPb} ; POWHEG+PYTHIA8; Reweighting
 - nCTEQ15HQ: $\frac{d\sigma}{dp_T dy}$; Data-driven approach

Quarkonia - J/ψ , $\psi(2S)$, $\Upsilon(1S)$ ncteq15hq

- Similar kinematics as D meson production, but significantly more data
- No perturbative calculation publicly available, but data-driven method can be applied and matches NRQCD results

Quarkonia - $J/\psi, \ \psi(2S), \ \Upsilon(1S)$ ncteq15hq

- Similar kinematics as D meson production, but significantly more data
- No perturbative calculation publicly available, but data-driven method can be applied and matches NRQCD results

See next talk for details

Pit Duwentäster

PROMPT PHOTONS

nNNPDF3.0, (nCTEQ15HQ)

- ► ATLAS provides forward, central and backwards rapidity data.
- Probes similar nPDF kinematics as previous two, but with color-neutral probe
- Important cross-check for higher-twist effects

PROMPT PHOTONS

nNNPDF3.0, (nCTEQ15HQ)

- ATLAS provides forward, central and backwards rapidity data.
- Probes similar nPDF kinematics as previous two, but with color-neutral probe
- Important cross-check for higher-twist effects

JLAB DIS

EPPS21, nCTEQ15HIX [Segarra et al., 2012.11566]

- ▶ high x, low Q^2
- \blacktriangleright Different nuclei: ⁴He, ⁹Be, ¹²C, ⁵⁶Fe, ⁶⁴Cu, ¹⁹⁷Au
- Potentially sensitive to higher-twist effects, target-mass corrections, and deuteron structure

JLAB DIS

EPPS21, nCTEQ15HIX [Segarra et al., 2012.11566]

- ▶ high x, low Q^2
- ▶ Different nuclei: 4 He, 9 Be, 12 C, 56 Fe, 64 Cu, 197 Au
- Potentially sensitive to higher-twist effects, target-mass corrections, and deuteron structure

NEUTRINO DIS REVISITED

nCTEQ15 ν [Muzakka et al., 2204.13157], (EPPS21), (nNNPDF3.0) Long standing tensions between neutral current DIS and certain neutrino DIS data sets

NEUTRINO DIS REVISITED

nCTEQ15 ν [Muzakka et al., 2204.13157], (EPPS21), (nNNPDF3.0) Long standing tensions between neutral current DIS and certain neutrino DIS data sets Results: Different ways to obtain compatibility:

- Cut x < 0.1 neutrino data
- (Uncorrelated NuTeV uncertainties)
- Use only CHORUS and semi-inclusive di-muon production data

Comparison of current NPDFs

	$N_{\rm data}$	$N_{\rm params}$	Observables
nCTEQ15HQ	1488	19	DIS, DY, SIH, WZ, D, Quarkonia
EPPS21	2077	24	($ u$)DIS, DY, SIH, WZ, dijet, D
nNNPDF3.0	2151	256	($ u$)DIS, DY, WZ, dijet, γ , D

Comparison of current NPDFs

	$N_{\rm data}$	$N_{\rm params}$	Observables
nCTEQ15HQ	1488	19	DIS, DY, SIH, WZ, D, Quarkonia
EPPS21	2077	24	($ u$)DIS, DY, SIH, WZ, dijet, D
nNNPDF3.0	2151	256	($ u$)DIS, DY, WZ, dijet, γ , D

Comparison of current NPDFs

	$N_{\rm data}$	$N_{\rm params}$	Observables
nCTEQ15HQ	1488	19	DIS, DY, SIH, WZ, D, Quarkonia
EPPS21	2077	24	($ u$)DIS, DY, SIH, WZ, dijet, D
nNNPDF3.0	2151	256	($ u$)DIS, DY, WZ, dijet, γ , D

Many others exist: KSASG20, TUJU21, DSSZ,...

Pit Duwentäster

GOALS AND CHALLENGES FOR THE FUTURE

- Include more available data sets
- Better treatment of theoretical uncertainties (MHOs, proton PDFs)
- Combined proton+nuclear PDF fit
- Systematically compare different nPDF fits (Similar to PDF4LHC in proton case)
- Develop stronger connections with nuclear physics community
- More differential quantities
 - Generalized parton distributions
 - Transverse momentum dependence
 - Parton polarizations
 - Multiparton interactions

FUTURE OF LHC DATA

- LHC Run 3 just started
 - update data of included observables with better statistics and improved detectors
 - proton-oxygen and oxygen-oxygen runs

FUTURE OF LHC DATA

- LHC Run 3 just started
 - update data of included observables with better statistics and improved detectors
 - proton-oxygen and oxygen-oxygen runs

EIC starts in 2031

- DIS provieds a very clean probe into nuclear PDFs
- Extended DIS kinematic range
- Runs with many different nuclei
- Transverse structure of nuclei

