

$e4v \& \mu 4v$

Brightening the Future of

Neutrino Oscillation Measurements

14th Conference on the Intersections of Particle and Nuclear Physics

September 1st, 2022

<u>J. L. Barrow</u> MIT & TAU Zuckerman Postdoctoral Scholar

Future Experimental *v* **Physics**

- Goal:
 - Extract v oscillation parameters
- Implications
 - Leptogenesis, cross sections, τ production, BSM, Non-Standard Interactions
- Challenges
 - Broadband v spectra
 - Unknown initial ν energy

Water Cherenkov Detectors

- Super & Hyper-Kamiokande's technology
 - Well understood, battle tested
 - Huge masses, statistics
- Oxygen as main nuclear target
 - "Simple" symmetric nucleus
- Reconstruct particle momenta from Cherenkov rings
 - High proton thresholds
 - Lack of γ/e separation power

Liquid Argon Time Projection Chambers

- DUNE's technology
- Argon as target
 - Complex nucleus
- Ionization of LAr for track reconstruction
 - Low proton thresholds
 - dQ/ds~dE/ds for calorimetry
 - γ/e separation power

PHYSICS PROCESS

Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Nature 599, 565–570 (2021)

How Do We Measure Oscillation Parameters?

Measure v interaction counts in our detectors... Must use an interaction model to deconvolve the v flux

6

Implications of Mismodeling

- Leads to misreconstruction
- Misinterpretations of experimental results!
 - Bad oscillation parameters
 - Fake systematic effects?
 - New physics?

*θ*₂₃[°]

Phys. Rev. D 89, 073015 (2014)

The Charged Lepton Strategy

Must Reconstruct Initial ν Energy

Generic unmagnetized detector

Definitive initial energy knowledge limited by observable final state via ionization p calorimetry and μ range, no magnetic curvature $\nu \sim Unknown incoming$ neutrino energy

Utilizing Electron Scattering Identical Topologies with Precision Beams

Generic magnetized detector

Most final state particles have well understood p kinematics via magnetic *e*′ curvature and calorimetry *e* ~Exactly known incoming electron energy

Utilizing Cosmic Muon Scattering Identical Topologies with Broad Spectra

Why Charged Leptons?

Improving Discrete Aspects of Modeling $\Rightarrow \sigma_i(E) R_{\sigma_i}(E, E_{rec})$

- Precision oscillation programs will require many processes to be well modeled
- Need input on all from electron scattering!

Recent eau Results

CLAS6 Data Mining

Past CLAS6 data sets used

- Large acceptance: $\theta_e > 15^{\circ}$ • "~50% of 4π " coverage
- Charged particle thresholds similar to ν detectors
- E_e :{1.1,2.2,4.4}GeV
- Targets: $\{{}^{4}\text{He}, {}^{12}\text{C}, {}^{56}\text{Fe}\}$

Lead to $e4\nu$'s recent <u>Nature publication</u> on $1p0\pi$

Inclusive A(e, e') **Data Comparisons**

- Consistent $\{v_{\ell}, \ell\}$ modeling now implemented
 - Can compare to world inclusive QE electron scattering data
 - Any misconstrued behavior here won't work for vs either!
- Much work to do!
 - Must build better models, constrain any free parameters!

QE-like Energy Reconstruction in v Experiments

Cherenkov

7 cm

- Goal: reconstruct $E_{\nu,\text{true}}$
- Methodology:
 - Extract E_e like E_v would be
 - Choose 0π events
 - Weight electron events by $\frac{\sigma_{\nu A}}{\sigma_{eA}} \propto Q^4$, account for propagator
- Detector types play a role
 - May use only lepton variables
 - *...assume pure* QE
 - ...others have lower thresholds

21

Tracking (LArTPCs)

 $E_{cal} = E_e + T_p + \epsilon_B$

Energy Reconstruction Issues Water Cherenkov Detectors: QE Assumption

- Generally lacking reconstruction of beam E_e
 - No access to final state baryons (below threshold)
- Strength issues
 - Overestimation of QE peak
 - Overestimation of RES tail

Energy Reconstruction Issues Tracking/Calorimetric Detectors: Summation

• Calorimetric sum over all visible particles (lower thresholds)

- Better agreement with beam $E_e \leftrightarrow QE$ peak quite narrow
- Relatively consistent behavior for QE-like signals
 - Overestimate of QE peak, tail overshoots due to RES and DIS
- DUNE will rely on more than QE, need RES!

New Results at CLAS12

Improvements Over CLAS6

 H_2O

CH

Ar

25

🚓 🖸 🖥

SBN

- Monoenergetic beams for {2.1,4.0,6.0}GeV
- *v*-relevant targets: {C, Ar, Ca}
- High luminosity (~10X > CLAS6)
- High angular acceptance: $\theta_e > 5^{\circ}$
 - Access very low Q^2 at lower beam energies

Initial Comparisons to Simulation Showing Unphysical Differences?

26

Future e4v Analyses

- Inclusive double differential cross sections: {C, Ar, Ca}
 - Access to many angles, many energies, low Q^2
 - Create a new world-level data sets
- Inclusive/Exclusive multidifferential cross sections
- $(e, e'), (e, e'p), (e, e'\pi^{\pm}), (e, e'p\pi^{-}), (e, e'pp), (e, e'n), (e, e'pn)...$
 - "Traditional" kinemátic variable for first GENIE tunings
 - Transverse kinematic variables (FSIs, nuclear models)
- Transparency studies (FSIs)
- Ca/Ar ratios
- Spectral functions, nuclear models

Goals of the MAV Initiative

Goals of $\mu 4\nu$

- Use cosmic μ interactions (like e!)
- Trigger on topologies of interest online
 - Utilize low level DAQ outputs ("hits")
 - Develop specific trigger algorithms
 - Michel electrons from decays $(\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e)$
 - QE-like proton(s) events ($\mu + Ar \rightarrow \mu + Np + X$)
 - $n \rightarrow \overline{n}...$

Preselection saves data processing, disk

Multiprong (4) QE-like candidate

Reconstructing cosmic muon scatter events in MicroBooNE

Primary focus

Multiprong (3) QE-like candidate

Reconstructing cosmic muon scatter events in MicroBooNE

Potential Ramifications of μ4ν Scattering Studies In Situ

- Use identical final states between μ and ν probes
 - Reconstructed energy comparisons in situ
 - Care about energy just before/after interaction
 - Offer online calibration
- QE-like candidates offer simplicity
 - Better understandings of *E* reconstruction
 - Other topologies possible

Cosmic μ + Ar cross sections (potentially)

Treat all hits as potential vertices
Treat all hits as potential vertices

Require certain number of hits to be within some angular tolerance, take an average

~**5**°

-**5**°

Most will have large enough angular differences to be outside angular tolerance

This greatly limits the number of possible tracks of particular angles which can be triggered on \rightarrow Require \geq 3 for multiprong!

Vertex found!

This greatly limits the number of possible tracks of particular angles which can be triggered on → Require ≥ 3 for multiprong!

Expected QE-like Data Rates

- QE-like proton (μ + Ar $\rightarrow p$ + μ + X) candidates
 - Assume QE EM cross section
- Estimate simulated with cosmic flux:
 - ~4000 cosmic μ per second

$\bullet\,{\sim}1\mathrm{Hz}$ true QE interactions above threshold

Monte Carlo Data View

Triggering on Multiprong Events in Monte Carlo

Real Data View

Conclusions

- ℓ^{\pm} scattering is a powerful proxy to ν interactions
 - e: Well constrained kinematics, systematics Plethora of data available for tuning v event generators
 - ℓ[±]:Useful for testing energy reconstruction techniques Informs interaction model!

Tune mutual vector part of interactions

- Cosmic μ provide *in situ* opportunities at our detectors
 - Similar final state topologies to v interactions
 - More kinematic information than initially invisible $\boldsymbol{\nu}$
 - Test each detector's *E* reconstruction directly!

A. Papadopoulou, MIT -> Argonne

Energy Reconstruction

<image>

Thanks to the MIT-TAU uB/e4v Group!

Thanks to the RGM/*e*4*v* **Group!**

Left to right:

- Erin Seroka (GW, GS)
- Larry Weinstein (ODU)
- Axel Schmidt (GW)
- Justin Estee (MIT, PD)
- Sara Ratliff (GW, GS)
- Moi
- Andrew Denniston (MIT, GS)

Thanks to the TAU Group!

Julia Tena-Vidal, PD

Amir Gruber, UG

Alon Sportes, MS

Matan Goldenberg, MS

Wes Ketchum FNAL

Thanks to the uB TP R&D team! µBooNE

<image>

Georgia Karagiorgi Columbia

Thank-you for your attention!

Questions?

Backup Slides

Neutrino Properties Must Be Understood

Neutrino Properties Must Be Understood

- Evidence of <u>oscillations</u> from <u>solar, atmospheric</u> and many other v experiments
- Massive states are mixtures of flavor states
 - Three-flavor model parameterized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

<u>PDG</u> <u>NuFit</u> <u>Phys. Rev. Lett. 81, 1562 (1998)</u> <u>Phys. Rev. Lett. 87, 071301 (2001)</u> <u>Phys. Rev. Lett. 89, 011301 (2002)</u>

Future Experimental v **Physics**

- Goal:
 - Extract v oscillation parameters
- Implications
 - Leptogenesis, cross sections, τ production, BSM, Non-Standard Interactions
- Challenges

Sanford Underground

Research Facility

• Broadband diverging v beam, unknown initial v energy

Why Charged Leptons?

- Nuclear physics is effectively identical!
- Constrain vector part of
 - all $\{\ell^{\pm}, \nu\}$ interactions!
 - Any model must work for ℓ^{\pm} or it won't for ν !
 - Benchmark simulations
 - Improve the vector and nuclear parts' behavior
 - Inform neutrino reconstruction

Improving Discrete Aspects of Modeling $\Rightarrow \sigma_i(E)R_{\sigma_i}(E, E_{rec})$

- Select observables for analysis with clear usefulness
 - Allows for "tuning" of models' parameters directly via vector part
 - Assumes some factorization

Simulation

, How to inform ν reconstruction?

- Broadband flux is difficult
- Utilize event generators!
 - Approximate theory calculations
 - Produce full final-state predictions

Four-momenta, interaction vertices...

- How to attain $R_{\sigma_i}(E_{\text{true}}, E_{\text{rec}})$?
 - Expect certain final states, sum energy
 - Apply particle thresholds
 - Eventually couple w/detector simulation
 - Provide estimates for...
 - True v energy reconstruction
 - Signal efficiency
 - Background estimations
 - Need to study "invisible" particles more!
 - Goal of TAU ν group!

⁴⁰Ar Counts Look Promising

- W approximated off the standing proton
- Shapes are reasonable
- ~5 MeV bins
 - Statistics look good!
- Problems

 w/GENIE prevent
 comparisons at
 high ω
 - Radiative effects
 dominate
 - Cut: $\omega \le 1.2 \text{ GeV}$

⁴⁰Ar Counts Look Promising

Data: Calorimetric Energy Distributions by Reconstructed Channel

Data Structure

Trigger Primitives

Trigger Primitives from Supernova Stream ROIs

Trigger Primitives from Supernova Stream ROIs

Time over threshold

Trigger Primitives from Supernova Stream ROIs

Trigger Primitive Data Structure

Can now visualize and process Trigger Primitive (TP) objects to create event displays and enter into the trigger algorithms

Unsorted TP data stream from DAQ

struct TriggerPrimitive

uint32_t chanel int64_t time_start uint16_t adc_integral uint16_t adc_peak int32_t time_over_threshold };

Unsorted TP vector
Ordered TP C++ maps

Multiprong (QE-like 1μ1p) Trigger Philosophy

Multiprong Trigger Design

- Considers "hits" of trigger primitives with locations in time and wire number
 - Time and wire ordering
 - Effectively a "cartesian" plane
- Treat every hit as a potential vertex
 - Consider surrounding hits only to try and find "tracks"
 - Outer box/"radius" of activity
- Transform: semi-*cylindrical* coordinates
 - Use θ to differentiate "tracks" from one another from
 - Consider hits only beyond some distance
 - Prevent non-smooth behavior of angle

PHYSICS PROCESS

Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Nature 599, 565–570 (2021)

How do we measure oscillation parameters?

Measure ν interaction counts in our detectors... Must use an interaction model to deconvolute the ν flux

How do we measure oscillation parameters?

Measure v interaction counts in our detectors... Must use an interaction model to deconvolute the v flux

$$N_{\alpha}(E_{rec},L) = \sum_{i=1}^{Nuclei} \int_{\varphi_{\alpha}(E_{true},L)} \sigma_i(E_{true}) R_{\sigma_i}(E_{true},E_{rec}) dE$$

measured interaction model interaction interaction

How do we measure oscillation parameters?

 $P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\text{true}},L) \approx \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{F}\right)$

detector

Events/0.10 GeV

60

40

20

0

0

 $R_{\sigma_i}(E_{\text{true}}, E_{\text{rec}})$

Similarities in Energy Transfers

- Vector part of interaction must be consistent between models
 - Much effort to make modeling consistent!
- Can compare by accounting for propagator masses
 - Scale by Q^4

Without Scaling

Data Driven Correction Closure Test

• Subtracted & True 1p0п are in good agreement

Well defined signal definition: Min θ_e Cut

(a) 1.1 GeV: $\theta = 17 + 7 / P$ (a) 2.2 GeV: $\theta = 16 + 10.5 / P$ (a) 4.4 GeV: $\theta = 13.5 + 15 / P$ See backup for p / $\pi^{+/-}$ definitions

• We do not acceptance correct below min $\boldsymbol{\theta}$

83

Well defined signal definition: Min θ_e Cut

@ 1.1 GeV: $\theta = 17 + 7 / P$ @ 2.2 GeV: $\theta = 16 + 10.5 / P$ @ 4.4 GeV: $\theta = 13.5 + 15 / P$ See backup for p / $\pi^{+/-}$ definitions

• We do not acceptance correct below min $\boldsymbol{\theta}$

Background Subtraction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps can make them look like (e,e'p) events

60

50

20

 10^{10}_{0}

 $\begin{bmatrix} 50 \\ -9 \end{bmatrix}$

Acceptance Maps

Data Driven Correction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

- Use measured (e,e'рп) events
- Rotate p, п around q to determine п detection efficiency
- Subtract undetected (e,e'рп)
- Repeat for higher hadron multiplicities

Irons

Data Driven Correction

Non-(e,e'p) interactions lead to multi-hadron final states

Gaps can make them look like (e,e'p) events

- Use measured (e,e'рп) events
- Rotate p, п around q to determine п detection efficiency
- Subtract for undetected (e,e'рп)
- Repeat for higher hadron multiplicities (2p, 3p, 2p+1π, ...)

Subtraction Effect

Multiple Coulomb scattering

Cartoon display

MCS relies on elastic-like interactions

Scattering producing small angular deviations over the track

Encodes true energy of the μ 's initial and final leg!

Multiple Coulomb scattering

Initial leg + $R_{\sigma_i}(E, E_{rec})$ momentum MCS constraint! p Calorimetry μ MCS constraints **Conservation Laws** Final leg momentum MCS constraint!

Many Generators, Many Assumptions

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

physics approximations

Assuming different models of Nature ($\sigma_i(E)$) can lead to ill-understanding of $R(E_{true}, E_{rec})!$

6

RGM Data Monitoring: ⁴⁰Ar **Counts Look Promising**

Energy (GeV)	Q ² Threshold	Channels with Expected Counts ($ imes 10^6$)						
		1 <i>p</i> Xn0 π^{\pm}	$2pXn0\pi^{\pm}$	$1pXn1\pi^{-}$	1 <i>p</i> Xn2 π^{\pm}	$1p1n0\pi^{\pm}$		
2.07	~0	~400	~20	~7	~0.6	~100		
4.03	~0.3	~90	~20	~3	~0.6	~20		
5.99	~0.5	~20	~5	~3	~2	~6		

⁴⁰Ar Counts Look Promising

99

⁴⁰Ar Counts Look Promising

Future e4v Analyses

- Inclusive multidifferential cross sections: {C, Ar, Ca}
 - Access to many angles, many energies, low Q^2
 - Create a new world-level data sets
- Inclusive/Exclusive multidifferential cross sections
- $(e, e'), (e, e'p), (e, e'\pi^{\pm}), (e, e'p\pi^{-}), (e, e'pp), (e, e'n), (e, e'pn)...$
 - "Traditional" kinematic variable for first GENIE tunings
 - Transverse kinematic variables (FSIs, nuclear models)
- Transparency studies (FSIs)
- Ca/Ar ratios?
 - Differences, similarities? Useful for v experiments?
- Spectral functions? Nuclear models?

Alon Sportes

Matan Goldenberg

e4v@CLAS Summary

- e4v is of paramount importance for a successful future v physics program
 - Proper reconstruction requires excellent nuclear physics modeling
 - Learn from electron scattering!
- CLAS12 and RGM shows great promise in continuing to close these gaps
 - $\{{}^{12}_{6}C, {}^{40}_{18}Ar, {}^{40}_{20}Ca\}$ data galore!
 - Excellent data set for bettering model comparisons!
- CLAS6 data mining analyses continuing!

Today's Visualizations

Data Words and Format

- TP generation has been implemented on FPGAs for realtime online streaming to trigger implementations
 - However, this hasn't yet worked for MicroBooNE...

 FFFFFFF
 F1E3FFFF
 F6A8F001
 F007F000
 F006F000
 F000F000
 F000F000
 117F4792

 C000C000
 C000C000
 C000C000
 1180418A
 C010C1A8
 C008C154
 C006C822
 F1E3FFFF

 F6A8F001
 F007F000
 F006F000
 F000F000
 F000F000
 118041A2
 C010CE77
 C007CEBE

 C005C7F3
 1180458A
 C010C1A8
 C008C154
 C006C822
 F1E3FFFF
 F6A8F001
 F007F000

 F006F000
 F000F000
 118045A2
 C010CE77
 C007CEBE
 C005C7F3
 1180498A

 C010C1A8
 C008C154
 C006C822
 F1E3FFFF
 F6A8F001
 F007F000
 F000F000

 F006F000
 F000F000
 118045A2
 C010CE77
 C007CEBE
 C005C7F3
 1180498A

 C010C1A8
 C008C154
 C006C822
 F1E3FFFF
 F6A8F001
 F007F000
 F000F000

 F000F000
 118045A2
 C010CE77
 C007CEBE
 C005C7F3
 F1E3FFFF
 F6A8F001
 F007F000

 F006F000
 F000F000
 11814193
 C016CB5A
 C002C7B8
 C001C201
 F1E3FFFF

 F6A8F001
 F0

Data Words and Format

Beginning of frame

FEM and ADC information for instance ID, number of words

Channel ID

FFFFFFF	F1E3FFFF	F6A8F001	F007F000	F006F000	F000F000	F000F000	117F4792
00000000	C000C000	C000C000	1180418A	C010C1A8	C008C154	C006C822	F1E3FFFF
F6A8F001	F007F000	F006F000	F000F000	F000F000	118041A2	C010CE77	C007CEBE
C005C7F3	1180458A	CØ10C1A8	C008C154	C006C822	F1E3FFFF	F6A8F001	F007F000
F006F000	F000F000	F000F000	118045A2	C010CE77	C007CEBE	C005C7F3	1180498A
C010C1A8	C008C154	C006C822	F1E3FFFF	F6A8F001	F007F000	F006F000	F000F000
F000F000	118049A2	CØ10CE77	C007CEBE	C005C7F3	F1E3FFFF	F6A8F001	F007F000
F006F000	F000F000	F000F000	11814193	CØ16CB5A	C002C7B8	C001C201	F1E3FFFF
F6A8F001	F007F000	F006F000	F000F000	F000F000	11814593	CØ16CB5A	C002C7B8
C001C201	F1E3FFFF	F6A8F001	F007F000	F006F000	F000F000	F000F000	11814993

Data Words and Format

TP data words:

Integral, amplitude, and time over threshold

FFFFFFF	F1E3FFFF	F6A8F001	F007F000	F006F000	F0001 000	F000F000	117F4792
00000000	C000C000	C000C000	1180418A	C010C1A8	C008C154	C006C822	F1E3FFFF
F6A8F001	F007F000	F006F000	F000F000	F000F000	118041A2	C010CE77	C007CEBE
C005C7F3	1180458A	C010C1A8	C008C154	C006C822	F1E3FFFF	F6A8F001	F007F000
F006F000	F000F000	F000F000	118045A2	C010CE77	C007CEBE	C005C7F3	1180498A
C010C1A8	C008C154	C006C822	F1E3FFFF	F6A8F001	F007F000	F006F000	F000F000
F000F000	118049A2	C010CE77	C007CEBE	C005C7F3	F1E3FFFF	F6A8F001	F007F000
F006F000	F000F000	F000F000	11814193	CØ16CB5A	C002C7B8	C001C201	F1E3FFFF
F6A8F001	F007F000	F006F000	F000F000	F000F000	11814593	CØ16CB5A	C002C7B8
C001C201	F1E3FFFF	F6A8F001	F007F000	F006F000	F000F000	F000F000	11814993

Data Acquisition

Modifications to the DAQ for this study
Plans for ~Online Triggering

- TP alongside SN streams
 - Run on three "new" SEBs
- Collect inputs from many parallel algorithms
- Trigger supervisor sends decision to global DAQ
- Builds event

Offline Data Replay

- Online streaming of TPs could not be completed
 - Despite success on MicroBooNE and SBND test stands
- Backup plan in motion...
 - Taken data for *offline replay*
 - 1. Run over data **without DAQ communications simulation**
 - Assess trigger performances and signal efficiencies
 - 2. Run over data with DAQ communications simulation
 - Assess data throughput, time-dependent trigger decisions in "real-time"

Data Taking

Run #	*ADC Value	Huffman Compression
28552, 28554, 28555 (~180")	NOMINAL	OFF
28542 (~150")	10	OFF
28548, 28549, 28564 (~180")	15	OFF
28550, 28551, 28557 (~180")	20	OFF

* Channel thresholds on ~all channels

$\mu 4\nu @MicroBooNE$ Summary

- Designed trigger interpreting TP data
 - **QE-like proton**(s) events $(\mu + Ar \rightarrow \mu + Np + X)$
 - Uses position and ADC information from TPs
 - Many topological possibilities!
- ~12 hours of SN data taken for offline replay
 - Will test trigger efficiencies (run over ~whole data set)
 - Will test data throughput capacity to triggers: "real time"

How do we reconstruct v interactions?

Propagation of spatially non-uniform, broadband neutrino fluxes through complicated detector geometries (and surrounding dirt, etc.)

Calculation of total and differential cross sections for all relevant reaction modes, target nuclei, and neutrino energies

 $\nu_{\mu}, \bar{\nu_{\mu}} + Fe$, all processes cm²) 10 (10⁻³⁸ , 10 σ_{vFe⁵⁶} 10 10 2×10⁻¹ 10 Ev (GeV)

Images by C. Andreopoulos

Provide a means of assessing interaction uncertainties that can be propagated into an analysis

Account for hadronization, FSI, etc. and pass a vertex position and a full set of 4-momenta for all outgoing particles to the detector simulation

MicroBooNE Simulation

Not cosmic-induced, but could be an eventual application of this work!

