

THE STATUS OF THE PROJECT 8 NEUTRINO MASS EXPERIMENT

Luiz de Viveiros - Penn State **Project 8 Collaboration**

- measurements

BETA DECAYS AND THE NEUTRINO MASS

- New spectroscopy technique: Cyclotron **Radiation Emission Spectroscopy (CRES)**
 - Formaggio and Monreal, Phys. Rev. D 80, 051301(R), 2009
- •Electron on a magnetic field: cyclotron motion; emitted cyclotron radiation depends on electron kinetic energy
- •Frequency falls in the microwave K-band for ~ 1 T fields
 - Tritium endpoint at 18.6 keV \implies For B ~ 0.95 T, f ~ 25.6 GHz
 - •^{83m}Kr conversion electrons (e.g. 17.8 keV) can be used for calibration \rightarrow f ~ 25.0 - 26.5 GHz
- •Radiated Power P = ~ 1 fW for 18.6 keV electrons
- Surprisingly, this had never been observed for a single electron!

THE IDEA: CYCLOTRON RADIATION EMISSION SPECTROSCOPY

kinetic energy factor

•Sensitivity to 40 meV/c² neutrino mass

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2}$$

•Measure neutrino mass or exclude inverted hierarchy

GOALS

PROJECT 8

Case Western Reserve University

Johannes Gutenberg Universitat, Mainz

Massachusetts Institute of Technology

Pacific Northwest National Laboratory

de Viveiros - Penn State

Karlsruhe Institute of Technology

Lawrence Livermore **National Laboratory**

Pennsylvania State University

University of Illinois

University of Washington

Yale Yale University

Phase I:

Demonstrate CRES technique on 83mKr mono-energetic electrons. Status: Complete! Technique demonstrated.

Phase II:

First T2 spectrum. Extract endpoint. Study systematics and backgrounds. Status: Nearing completion

Phase III:

(a) "Large Volume" CRES

(b) Atomic tritium production and trapping at high densities

Phase IV:

arge atomic tritium experiment. Inverted mass ordering reach (40 meV)

THE PROJECT 8 SCIENTIFIC PROGRAMME: A PHASED APPROACH

CIPANP22

PHASES | AND || - THE DETECTOR

•Assembled at the University of Washington in Seattle, WA

de Viveiros - Penn State

CIPANP22

First detection of single-electron cyclotron radiation - Phys. Rev. Lett. 114, 162501 (2015)

- Data taking started on 6/6/2014
- •Energy reconstructed from the event initial frequency: ^{83m}Kr lines: 17.8 keV, 30.4 keV, 32 keV, and more

de Viveiros - Penn State

FIRST DATA

FIRST TRITIUM DATA

- •First Tritium Event Same general features as seen in Kr data
- are critical

•Short initial run followed by a systematics campaign \rightarrow Study of spectral distortions due to efficiency and lineshape

ACHIEVING EV-SCALE RESOLUTION

de Viveiros - Penn State

CIPANP22

- •In Phase II, we usually operate in one of two possible configurations:
 - •Shallow harmonic trap for high precision scans
 - •Deep harmonic trap for high statistics
- •Resolution measured by fitting ^{83m}Kr calibration data
 - •17.8 keV K-line from ^{83m}Kr, with FWHM = $2.8 \pm 0.1 \text{ eV}$ natural line width
- •Best demonstrated instrumental width: $FWHM = 1.7 \pm 0.2 eV$
 - Satellite peak from shake-up/shake-off and scattering from residual gas
- Detected line shape well-described by model

- •In Phase II, we usually operate in one of two possible configurations:
 - •Shallow harmonic trap for high precision scans
 - •Deep harmonic trap for high statistics
- •Resolution measured by fitting ^{83m}Kr calibration data
 - •17.8 keV K-line from ^{83m}Kr, with FWHM = 2.8 ± 0.1 eV natural line width
- •Tritium dataset uses deeper trap: **FWHM = 54.3 eV**
 - Higher statistics at cost of energy resolution \rightarrow Better predicted sensitivity to endpoint for ~100 day run
 - •Compensate for small 1 mm³ effective volume
 - Detector response model still works well
 - •Effects from magnetic field inhomogeneity, scattering, and missed tracks are understood

- Magnetic field swept to study efficiency and scattering effects across frequency ROI
- •Using 17.8 keV Kr line

$$f_{\gamma} = \frac{eB}{2\pi (m_e + K/c^2)}$$

- Direct characterization of significant **RF** response variation of the waveguide
- Notch in efficiency is understood (*)
 - Caused by the interaction with TM₀₁ mode of detection cavity
 - Quantitatively characterized and is accounted for in analysis

⁸³^MKR MEASUREMENTS: FREQUENCY DEPENDENCE

PHASE II TRITIUM RESULTS

150

100

3.0

1.5

0.0

-1.5

-3.0

ounts

Long science run completed in 2020

- •82 net days of data taking, 3770 events
- •4 trapping coils, 1 mm³ effective volume
- •T₂ endpoint measurement in agreement with literature
 - •Frequentist: $E_0 = (18550^{+22}_{-18}) \text{ eV} (1\sigma)$
 - •**Bayesian:** $E_0 = (18553^{+17}_{-17}) \text{ eV} (1\sigma)$
- •First neutrino mass measurement using CRES !
 - •Frequentist: $\leq 178 \text{ eV/c}^2 (90\% \text{ C}.\text{L})$
 - ≤ 178 eV/c² (90 % C.L) spectrum≤ 169 eV/c² (90 % C.L) spectrumpast endpoint spectrumStatementStat•Bayesian:
- No events past endpoint
 - \Rightarrow sets limit on background rate:

 $\leq 3 \times 10^{-10} \text{ eV}^{-1} \text{s}^{-1}$ (90 % C.L.)

Phase I:

Demonstrate CRES technique on 83mKr mono-energetic electrons. Status: Complete! Technique demonstrated.

Phase II:

First T2 spectrum. Extract endpoint. Study systematics and backgrounds. Status: Nearing completion

Phase III:

(a) "Large Volume" CRES

(b) Atomic tritium production and trapping at high densities

Phase IV:

_arge atomic tritium experiment. Inverted mass ordering reach (40 meV)

THE PROJECT 8 SCIENTIFIC PROGRAMME: A PHASED APPROACH

CIPANP22

PHASE-III

•Phase-III: Develop the new techniques needed to achieve the Project 8 goal sensitivity

Atomic Tritium \Rightarrow Decrease Final State Uncertainty

ATOMIC TRITIUM DEMONSTRATOR

ATOMIC TRITIUM

- •The irreducible final state distribution in 3HeT+ final state after decay of molecular tritium complicates the extraction of neutrino mass
 - •Limits all future tritium-based experiments to ~100 meV sensitivity!
- •Switch to Atomic Tritium to improve mass sensitivity: 40 meV!
- •Challenges: How to produce atomic T? How to trap?
 - •Simultaneous efforts to create large flow of tritium atoms, typically at about 100 times higher than commercial crackers
 - Tritium atoms have a magnetic moment; two of the four spin states are drawn towards low-magnetic-field regions => trap them in a magnetic bottle

1000

•Design: Cool and trap polarized atomic tritium in loffe magnetic trap

m/z = 1 Signal at 16 [eV] and 20 [sccm] of Hydrogen m/z = 1 readings .50 cm 600 - 500 400 [[] 300 <u>–</u> - 200 - 100 **Design Concept: loffe magnetic trap** 2500 1500 2000 Capillary Temperature [K]

CIPANP22

LARGE VOLUME CRES: RESONANT CAVITY

- •Dipolar decay rate can be greatly reduced by lowering magnetic field for longer trapping life times •Magnetic field of 0.01 to 0.04 T \Rightarrow Frequency of 0.3 to 1 GHz
- •Cavity volume scales as $1/f^3 \Rightarrow$ Lower frequency makes resonant cavity desirable
 - Multiple Transverse electric (TE) & transverse magnetic (TM) modes \Rightarrow Complex signal and complex readout
- •Design: Cylindrical, open-ended (to allow for atom flow), mode-filtered (suppress all by TE_{01p} modes) cavity
 - •Use either helical grooves or insulating rings to allow only only circumferential currents

•6 GHz Prototype

- •Copper tubes connected by clear PVC rings (dielectric spacers) permit only circumferential currents
 - 1 cm spacer, 3 cm body section, 6 cm end section
- •Allows only TE01p modes to propagate
- Verified mode-filtering, readout via rotatable coax loop
 - Measured with VNA

CAVITY R&D - FIRST MEASUREMENTS

Readout

CIPANP22

- efficiency

CAVITY R&D

CAVITY-BASED ATOMIC TRITIUM EXPERIMENT

de Viveiros - Penn State

Phase I:

Demonstrate CRES technique on 83mKr mono-energetic electrons. Status: Complete! Technique demonstrated.

Phase II:

First T2 spectrum. Extract endpoint. Study systematics and backgrounds. Status: Nearing completion

Phase III:

(a) "Large Volume" CRES

(b) Atomic tritium production and trapping at high densities

Phase IV:

_arge atomic tritium experiment. Inverted mass ordering reach (40 meV)

THE PROJECT 8 SCIENTIFIC PROGRAMME: A PHASED APPROACH

CIPANP22

•Atomic tritium experiment combines R&D from Phase III into large tritium trap. •Atomic source, transport, and trap for large (>10 m³) instrumented volume.

PHASE IV

- Target Mass Sensitivity: $m_{\beta} \sim 40 \text{ meV}$
 - Resolve the inverted ordering case ($m_\beta \gtrsim 50 \text{ meV}$)

CIPANP22

THANK YOU!

Case Western Reserve University

Indiana University

Johannes Gutenberg Universitat, Mainz

> Karlsruhe Institute of Technology

Lawrence Livermore **National Laboratory**

Massachusetts **Institute of Technology**

Pacific Northwest National Laboratory

Pennsylvania State University

University of Illinois

University of Washington

Yale Yale University

This work is supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all institutions.

Project 8 has demonstrated the potential of the CRES technique, and charts a promising path towards a direct neutrino mass measurement!

