

Latest Results from KATRIN and Neutrino Mass

Ann-Kathrin Schuetz for the KATRIN Collaboration

Neutrino mass observables

Complementary paths to the neutrino mass scale

Neutrino mass from β -decay kinematics

β-decay: $n \rightarrow p + e^- + \overline{\nu}_e$

- Neutrino mass influences energy spectrum of β-decay electrons
- Neutrino mass determination via precise measurement of the spectral shape close to the endpoint
- Model independent method

$$\frac{d\Gamma}{dE} = K \cdot F(Z, E) \cdot \underbrace{p}_{p_e} \cdot \underbrace{E_{tot}}_{E_e} \cdot \underbrace{(E_0 - E)}_{E_\nu} \cdot \underbrace{\sum_i |U_{ei}|^2 \sqrt{(E_0 - E)^2 - m_i^2}}_{p_\nu}$$

Fermi's phase space for β -decay

Spectral distortion measures effective mass square

Observable
$$m_{eta}^2 = \sum_i |U_{ei}|^2 \, m_i^2$$

Experimental Challenge

- Convenient isotope: half-life, Q-value
 - Low endpoint energy: $E_0 = 18.6$ keV for ³H
 - High-activity source: $t_{1/2} = 12.3$ yr for ³H
- High resolution ~ 1 eV
- Low background

KATRIN working principle

Main challenges:

- Stability of tritium source
- Stability of energy scale
- Low background level

KArlsruhe TRItium Neutrino Experiment

Measurement principle

- Main spectrometer acts as high-pass filter that rejects low-energy electrons
- Set different retarding energies in the main spectrometer
- Count all electrons that pass the filter
- Integral measurement of the tritium βspectrum
- Several measurement campaigns per year:
 - each 2-3 months long
 - separated by calibration and maintenance breaks
- Several hundred scans of the β-decay spectrum in each campaign:
 - each ~2.5 hours long
 - scanning randomly (alternating in direction)
 - scans different between campaigns

- Ca. 30 high-voltage steps in each scan
- Different regions for 4 fit parameters: m²(v), endpoint E₀, norm. A, background B
- Distribution optimized for $m^2(v)$ sensitivity Ca. 25% of time spent on background

Tritium spectrum calculation

Retarding energy qU (eV)

Neutrino-mass result for 2nd campaign

- Improved ratio of source activity to background from 1st campaign to 2nd campaign
- Overall improvement of statistics
- High quality of 12 ring-wise spectra and excellent agreement with model
- Frequentist limit using method of Lokhov and Tkachov which coincides with method of Feldman and Cousins upper limits with $m^2 \ge 0$
- Bayesian sampling with flat positive prior in m²
- Best-fit effective endpoint E₀ = 18573.69 ± 0.03 eV consistent with mass difference ΔM(³He-³H) from precision Penning traps → independent check of energy scale

Best-fit value (stat. and syst.):

$$m_{\nu}^2 = 0.26 \pm 0.34 \mathrm{eV}^2$$

Uncertainty budget:

- Total: 0.34 eV2
- Statistics: 0.29 eV2
- Systematic: 0.18 eV2

Nature Phys.18, 160 (2022)

⇒ First sub-electronvolt direct neutrino mass measurement and sensitivity

Results Combined 1st and 2nd campaign

Nature Phys.18, 160 (2022)

Different strategies pursued:

- 1. Combined fit with shared neutrino mass
- 2. Multiply distributions from MC propagation

3. Bayesian analysis: use posterior of first campaign as prior for second campaign

Leading upper limit on neutrino mass:

```
m_{\nu} < 0.8 \text{ eV} (90 \% \text{CL})
```


Best fit:	$m_{\beta}^2 = 0.1 \pm 0.3 \text{ eV}^2$
Limits LT and FC:	$m_{\beta} < 0.8 \text{ eV}$ (90% CL)
Limits Bayesian:	$m_{\beta} < 0.73 \text{ eV}$ (90% CI)

30 years retrospective on tritium experiments

Systematics overview

Outlook: next neutrino mass campaigns

KNM6 & 7 on disk KNM8 will start soon

Coming next:

- Next data release [1-5] ETA end of 2022
- Statistics increased by $\approx x3.6$
- Background reduction by $\approx x2$
- Systematics reduction by $\approx x6$

Background reduction:

- All low energy e- in main spectrometer volume can mimic signal
- MAC-E filter can store fast ethrough "magnetic bottle" effect
- Stored e- ionize residual gas creating low energy secondary electrons

➡ Shifted analyzing plane (SAP)

Physics "beyond the neutrino mass" with KATRIN

Summary & Outlook

Latest KATRIN results: (1st and 2nd datasets combined) Nature Phys.18, 160 (2022)

 $m_{\beta}^2 = 0.1 \pm 0.3 \text{ eV}^2$

- Still strongly dominated by statistics
- Statistics dominated, largest systematic from background
- Complementary with Cosmology and Double Beta Decay
- Currently only leading experiment (Future: Project8, ECHo, HOLMES)

Future measurements:

- 8th measurement campaign will start soon
- Improvements on background reduction established
- Full KATRIN sensitivity (1000 d): 0.2 eV (90% CL)
- Precision β-kinematics: great perspectives for new physics "beyond the neutrino mass", e.g. eV- and keV-scale sterile neutrinos, Lorentz invariance, relic v overdensities, exotic weak interactions, ...

