AMS-02 Networks

Unique Properties of Cosmic Rays: Results from the Alpha Magnetic Spectrometer

ELC2

Yi Jia, MIT On behalf of AMS Collaboration

> September 2, 2022 CIPANP 2022 Lake Buena Vista, Fla

AMS is a space version of a precision detector used in accelerators

Transition Radiation Detector (TRD) identify e⁺, e⁻

Upper TOF measure Z, E

The detectors provide independent information of cosmic rays

Calibration at CERN

with different particles at different energies

10³

10²

10 -0.02

-0.01

0

Ten years of operation of AMS on the ISS: Continuous Calibration

By comparing proton data and simulation from

Examples of Detector Monitoring: Tracker Alignment

Monitored every 2 minutes by cosmic rays

Inner tracker alignment (< 1 micron) monitored with IR lasers

> Outer tracker (a) Layer-1 and (b) Layer-9 stable to 2 micron over 9 years

Precision Measurements of Inelastic Cross Sections for Accurate Flux Determination

Define (P, Z) of the nuclei with the central spectrometer

AMS Launch May 2011 Space Shuttle Endeavour Mission STS-134

To date, over 200 billion charged particles have been collected by AMS

Sinstalled on the ISS Carch Orbit: a titude 400 Km Inclination 52° period 92 min

Origins of Elementary Particles Positrons e⁺, Electrons e⁻, Antiprotons p , and Protons p

Cosmic Ray Positron and Electron Spectra before AMS

Cosmic Ray Positron and Electron Spectra measured by AMS

The Origin of Positrons

Low energy positrons mostly come from cosmic ray collisions

The positron flux is the sum of a low-energy part from cosmic ray collisions and a high-energy part from a new source.

The finite cutoff energy E_s is established at 4.5 σ C.L.

Positron and a Dark Matter Model

Origins of Cosmic Electrons

The contribution from cosmic ray collisions is negligible

Properties of Cosmic Antiprotons The p and e⁺ fluxes have identical rigidity dependence. **p** are not produced by pulsars. Gev² 30 15 S⁻¹ Sr¹ 10 Φ [m⁻² х йШ 10 5 **AMS 0.8 million Antiprotons** ullet**AMS 3.4 million Positrons** • 0 10² 10³ Energy [GeV]

Example: Positron and Antiproton Spectra compared with Recent Models

Model Example:

P. Mertsch, A. Vittino, S. Sarkar, PRD 104 (2021) 103029

"Explaining cosmic ray antimatter with secondaries from old supernova remnants"

Precision Measurements of Cosmic Nuclei by AMS

Primary Cosmic Rays

Primary cosmic rays p, He, C, O, ..., Si, ..., Fe are produced during the lifetime of stars and accelerated by supernovae. They propagate through interstellar medium before they reach Earth.

Measurements of primary cosmic ray fluxes are fundamental to understanding the origin, acceleration, and propagation processes of cosmic rays in the Galaxy.

Latest AMS proton flux measurement

Latest AMS Measurements of He, C, and O Fluxes

He, C and, O fluxes have an identical rigidity dependence above 60 GV. Above 200 GV, they all deviate from a single power law in an identical way.

Latest AMS Measurements of Ne, Mg, Si, and S Fluxes

AMS results are different from previous measurement both in magnitude and the energy dependence. They are also different from the cosmic ray theory predictions.

Properties of Heavy Primary Cosmic-Ray Ne, Mg, Si

Suprisingly, heavy primary cosmic rays Ne, Mg, and Si also have identical rigidity dependence above 86 GV, but it is distinctly different from light primary cosmic rays He, C, and O. This shows that primary cosmic rays have at least two distinct classes.

Sulfur belongs to the same class as Ne, Mg, and Si.

10

Ω

345

Heavy Primary Cosmic Rays: Iron and Nickel Fluxes

Unexpected Results: Iron is the Same Class as He, C, O instead of the heavier Ne, Mg, Si

AMS Nickel Flux: rigidity dependence is similar to Fe

Secondary Cosmic Rays

Secondary Li, Be, B, and F nuclei in cosmic rays are produced by the collision of primary cosmic ray C, O, Ne, Mg, Si, ..., Fe with the interstellar medium.

Measurements of the secondary cosmic ray nuclei fluxes are important in understanding the propagation of cosmic rays in the Galaxy.

Latest AMS Measurements of Li, Be, B, and F Fluxes

Light Secondary Cosmic Rays Li, Be, and B Fluxes

Li, Be, B also have identical rigidity dependence, but distinctly different from primaries.

Secondary cosmic rays have two classes: Li-Be-B and F

Both classes are different from primaries.

Light Secondary (Li, Be, B) to Primary (C, O) Flux Ratio

The ratio of secondary flux to primary flux directly measures the amount and properties of interstellar medium. Before AMS, the secondary-to-primary ratios (B/C ...) were assumed to be $\propto R^{\Delta}$ with Δ a constant (independent of R and Z) for R > 60GV.

Above 192 GV all six secondary-to-primary flux ratios harden

AMS 10-year Measurement of (F/Si)/(B/O)

Theory: light cosmic rays and heavy cosmic rays have the same propagation properties, thus $\frac{F(Z=9) / Si(Z=14)}{B(Z=5) / O(Z=8)}$ is constant

AMS results show that the propagation properties of heavy cosmic rays are different from those of light cosmic rays

The Third Group of Cosmic Rays

Primary cosmic rays (p, He, C, O, Ne, Mg, Si ..., Fe)

> Secondary cosmic nuclei (Li, Be, B, F, ...)

AMS discovered that the third group of cosmic rays (N, Na, Al,...) are produced both in the stars and in the interstellar medium

A third group of cosmic rays: N-Na-Al partially primary, partially secondary

AMS Results on Cosmic Ray Nuclei

Surprises in Solar Physics

Cosmic radiation from the Milky Way: 90 rem/year The lethal dose is about 300 rem

Earth

ars

long-term base on the Moon or Mars

40

AMS Daily Proton and Helium Fluxes

6 billion protons and 850 million helium nuclei collected from May 20, 2011 to May 2, 2021

Periodicities of Daily Proton Fluxes in 2016

Unexpectedly, the strength of 9day and 13.5-day periodicities increases with increasing rigidity up to ~10 GV and ~20 GV, respectively. Then the strength decreases with increasing rigidity up to 100 GV.

Thus, the AMS results do not support the general conclusion that the strength of the periodicities always decreases with increasing rigidity

Phys. Rev. Lett. 127, 271102 (2021)

A hysteresis between $\Phi_{\rm He}/\Phi_p$ and $\Phi_{\rm He}$

Electron-proton and Positron-proton 1.00 – 2.97 GV

Elementary Particles in the Heliosphere (Protons, positrons, electrons, and antiprotons)

|Rigidity| = 1.92-2.97 GV

AMS for the next ten years: Upgrade with new Silicon Tracker Layer Acceptance increased to 300%

New Silicon Tracker Layer

Conclusion

AMS is the only magnetic spectrometer in space.

The latest ten-year AMS results on charged cosmic rays were presented. These new measurements are challenging our understanding of cosmic ray physics. AMS will continue taking data for the lifetime of the International Space Station.