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Hervé Dutrieux

collaboration with V. Bertone, C. Mezrag, H. Moutarde and P. Sznajder

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) – herve.dutrieux@cea.fr

1 / 34



Exciting experimental promises

• The EIC offers to measure exclusive
processes sensitive to GPDs at high
luminosity on a large kinematic range.

• This triggers interest in unbiased
extraction of GPDs from exclusive
processes, beyond models parametrized
with limited flexibility.

• In this talk, particular emphasis is put on
deeply virtual Compton scattering (DVCS)
considered as a golden channel of GPD
extraction and already thoroughly studied.
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Deeply virtual Compton scattering and the structure of hadrons

1. Deeply virtual Compton scattering and
the structure of hadrons
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Deeply virtual Compton scattering and the structure of hadrons

DVCS: lepton hadron scattering via a photon of large virtuality, producing a real photon in the
final state. It is an exclusive process with an intact recoil proton.
• x is the average light-front plus-momentum (longitudinal momentum in a fast moving
hadron) fraction of the struck parton

• ξ describes the light-front plus-momentum transfer, linked to Björken’s variable xB
• t = ∆2 is the total four-momentum transfer squared

Tree-level depiction of DVCS for x > |ξ| (left) and ξ > |x | (right)

GPDs were introduced more
than two decades ago in
[Müller et al, 1994],
[Radyushkin, 1996] and [Ji,
1997].
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Deeply virtual Compton scattering and the structure of hadrons

Similarly to usual PDFs in the study of DIS,

• For a large photon virtuality Q2 = −q2, finite xB and small t, factorisation theorems
describe DVCS observables in terms of a hard scattering part, and a soft part described by
generalized parton distributions (GPDs).

• DVCS observables can be expressed in terms of Compton form factors (CFFs) F , which
write as convolutions of perturbative coefficient functions T a

F and the GPDs F a:

CFF convolution (leading twist) [Radyushkin, 1997], [Ji, Osborne, 1998], [Collins,
Freund, 1999]

F(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a
F

(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
F a(x , ξ, t, µ2)

xpa
(1)

µ is the factorisation / renormalisation scale, αs the strong coupling, pa = 0 for a = q and
pa = 1 for a = g .
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Deeply virtual Compton scattering and the structure of hadrons

Properties of GPDs

• The forward limit t → 0, ξ → 0 gives back the usual PDF

Ha(x , ξ = 0, t = 0, µ2) = xpa f a(x , µ2) (2)

where pa = 0 if a = q and pa = 1 if a = g .

• The evolution of GPDs with scale µ2 generalizes the evolution kernels of PDFs (DGLAP)
and distribution amplitudes (ERBL) [Müller, 1994]

1

xpa
∂

∂ log(µ2)
Ha(x , ξ, t, µ2) =

∑
b

∫ 1

−1

dy

ξ
K ab

(
y

ξ
,
ξ

x
, αs(µ

2)

)
Hb(y , ξ, t, µ2)

ypb
(3)

• Because of the parity of the process, DVCS only involves the C -even – or singlet – GPDs,
given e.g. for Hq by

Hq(+)(x , ξ, t, µ2) = Hq(x , ξ, t, µ2)− Hq(−x , ξ, t, µ2) (4)
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Deeply virtual Compton scattering and the structure of hadrons

Polynomiality of Mellin moments: [Ji, 1998], [Radyushkin, 1999]
Due to Lorentz covariance,∫ 1

−1
dx xnHq(x , ξ, t, µ2) =

n+1∑
k=0 even

Hq
n,k(t, µ

2)ξk (5)

This property implies that the GPD is the Radon transform of a double distribution F q (DD)
with an added D-term on the support Ω = {(β, α) | |β|+ |α| < 1}:

Double distribution formalism [Radyushkin, 1997], [Polyakov, Weiss, 1999]

Hq(x , ξ, t, µ2) =

∫
Ω
dβdα δ(x − β − αξ)

[
F q(β, α, t, µ2) + ξδ(β)Dq(α, t, µ2)

]
(6)
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Deeply virtual Compton scattering and the structure of hadrons

• Remarkably, GPDs allow access to gravitational form factors (GFFs) of the
energy-momentum tensor (EMT) [Ji, 1997] defined for parton of type a

Gravitational form factors [Lorcé et al, 2017]

⟨p′, s ′|Tµν
a |p, s⟩ = ū(p′, s ′)

{
PµPν

M
Aa(t, µ

2) +
∆µ∆ν − ηµν∆2

M
Ca(t, µ

2) +MηµνC̄a(t, µ
2)

+
P{µiσν}ρ∆ρ

4M

[
Aa(t, µ

2) + Ba(t, µ
2)
]
+

P [µiσν]ρ∆ρ

4M
DGFF
a (t, µ2)

}
u(p, s)

(7)

where

∆ = p′ − p, t = ∆2, P =
p + p′

2
(8)
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Deeply virtual Compton scattering and the structure of hadrons

In the Breit frame (P⃗ = 0, t = −∆⃗2),
radial distributions of energy and
momentum in the proton are described by
Fourier transforms of the GFFs w.r.t.
variable ∆⃗ [Polyakov, 2003].

• Example of such distribution: radial pressure anisotropy profile

sa(r , µ
2) = −4M

r2

∫
d3∆⃗

(2π)3
e−i∆⃗·r⃗ t

−1/2

M2

d2

dt2

[
t5/2 Ca(t, µ

2)
]

(9)

• This pressure profile can be extracted from GPDs thanks to e.g. for quarks∫ 1

−1
dx x Hq(x , ξ, t, µ2) = Aq(t, µ

2) + 4ξ2Cq(t, µ
2) (10)∫ 1

−1
dx x Eq(x , ξ, t, µ2) = Bq(t, µ

2)− 4ξ2Cq(t, µ
2) (11)
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Extraction of GFFs

2. Warming-up: extraction of gravitational form
factors from experimental data
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Extraction of GFFs

• No need to fully extract the GPDs H or E to conveniently access the GFF Cq(t, µ
2).

Thanks to the polynomiality property, Cq(t, µ
2) depends only on the D-term via∫ 1

−1
dz zDq(z , t, µ2) = 4Cq(t, µ

2) (12)

• Experimental data is sensitive to the D-term through the subtraction constant defined
by the dispersion relation (see e.g. [Diehl, Ivanov, 2007])

DVCS dispersion relation

CH(t,Q2) = ReH(ξ, t,Q2)− 1

π

∫ 1

0
dξ′ ImH(ξ′, t,Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
(13)

The subtraction constant CH(t,Q2) is a function of the D-term given at LO by

CH(t,Q2) = 2
∑
q

e2q

∫ 1

−1
dz

Dq(z , t,Q2)

1− z
(14)
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Extraction of GFFs

• How do we get from∫ 1

−1
dz

Dq(z , t, µ2)

1− z
to

∫ 1

−1
dz zDq(z , t, µ2) ? (15)

• This is a prototype of the more complicated GPD extraction problem we will face later
on. The known solution is through evolution.

• Let’s expand the D-term on a basis of Gegenbauer polynomials

Dq(z , t, µ2) = (1− z2)
∑
odd n

dq
n (t, µ

2)C
3/2
n (z) (16)

Then

GFF Ca extraction∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ

2) and

∫ 1

−1
dz zDq(z , t, µ2) =

4

5
d1(t, µ

2) (17)
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Extraction of GFFs

• Because Gegenbauer polynomials diagonalize the LO ERBL [Lepage, Brodsky, 1979],
[Efremov, Radyushkin, 1979] evolution kernel, each term dq

n (t, µ2)∗ evolves
multiplicatively with a different anomalous dimension. Since exponentials are a free family
on any non-vanishing interval, the decomposition∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ

2) (18)

is unique, non-ambiguous and theoretically allows to entirely retrieve the D-term
from the knowledge of the subtraction constant on any non-vanishing interval in
Q2 = µ2.

• All is well on paper, but what about in real life?

∗actually, due to the mixing of quarks and gluons under evolution, it is actually a linear combination of dq
n

and dg
n which evolves multiplicatively, but it does not change the argument
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Extraction of GFFs

• Details found in [Dutrieux et al, Eur.Phys.J.C 81 (2021) 4, 300]. We perform a
neural network fit of CFFs over world DVCS data, which gives a subtraction constant
compatible with 0 → also found in [Kumericki, 2019]. Then fixing the t-dependence
with an Ansatz and assuming all dn for n > 1 to be 0 gives

In green, 68% confidence interval found for∑
q d

q
1 (t = 0, µ2). Results obtained by the two

other data-driven extractions highlighted.
But this is essentially a fit with one free
parameter dq

1 whose uncertainty reflects
the experimental uncertainty on the
subtraction constant. What happens in
case of a more flexible parametrization?
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Extraction of GFFs

• To reduce bias, let us also allow dq
3 to be fitted jointly with dq

1 (µ2
F = 2 GeV2)

• Uncertainty explodes, and dq
1 (µ

2
F ) ≈ −dq

3 (µ
2
F )! What is going on?
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Extraction of GFFs

• The LO subtraction constant reads∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ

2) (19)

so at fixed scale µ2
0, d

q
1 (µ

2
0) = −dq

3 (µ
2
0) does not bring any contribution on the

subtraction constant. Arbitrary large values of dq
1 (µ

2
0) = −dq

3 (µ
2
0) are unconstrained

by experimental data at fixed scale.

• Under evolution, the equality dq
1 (µ

2) = −dq
3 (µ

2) cannot remain valid, and evolution
provides the practical way to make the problem invertible. But if experimental data are
only available on a small range on Q2, we still may have dq

1 (µ
2) ≈ −dq

3 (µ
2). Strong

difference in the rate of evolution of different dn on the probed Q2 range is crucial
for the practical possibility of performing an unbiased extraction.

17 / 34



Extraction of GFFs

Preliminary result

2 4 6 8 10
2 (GeV2)
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0.0
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1.2
qq
1 ( 2, 2 GeV2)
qq
3 ( 2, 2 GeV2)

Simplified evolution in the qq sector

dq
n (µ

2) = Γqqn (µ2, 2 GeV2)dq
n (2 GeV2)

(20)

• current range of most DVCS data : [1.5, 4] GeV2

• Over this range, Γqq1 and Γqq3 are numerically very
close → little actual leverage in evolution to
separate the two

• Estimate of the inflation on uncertainty when fitting
jointly d1 and d3 compared to the sole d1 :

∝
(
1−

Γqq3 (Q2
max,Q

2
min)

Γqq1 (Q2
max,Q

2
min)

)−1

(21)

• An increase thanks to EIC from [1.5, 4] GeV2

to [1.5, 50] GeV2 could yield a decrease by 3
times of the uncertainty on (d1, d3) due to the
sole effect of increase in Q2 range, without
taking account a better experimental precision.
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Deconvoluting a Compton form factor

3. Deconvoluting a Compton form factor: shadow GPDs
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Deconvoluting a Compton form factor

Position of the problem
Assuming a CFF has been extracted from experimental data with excellent precision – and the
different gluon and flavor contributions have been separated –, we are left with the convolution:∫ 1

−1

dx

ξ
T q

(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
Hq(x , ξ, t, µ2) = T q(Q2, µ2)⊗ Hq(µ2) (22)

where T q is a coefficient function computed in pQCD. Can we then ”de-convolute”
Eq. (22) to recover Hq(+)(x , ξ, t, µ2) from T q(Q2, µ2)⊗ Hq(µ2)?

20 / 34



Deconvoluting a Compton form factor

• Question was raised 20 years ago. Evolution was again proposed as a crucial element in
[Freund, 1999], but no full-fledged proof of feasibility at NLO was provided.

• Following the same idea as previously, we show that GPDs exist which bring exactly no
contributions to the LO and NLO CFF at fixed scale, and study the effect of evolution on
such objects. We call them LO and NLO shadow GPDs.

Definition of an NLO shadow GPD

For a given scale µ2
0,

∀ξ,∀t,T q
NLO(Q

2, µ2
0)⊗ Hq(µ2

0) = 0 and Hq(x , ξ = 0, t = 0, µ2
0) = 0 (23)

so for Q2 and µ2 close enough to µ2
0, T q

NLO(Q
2, µ2)⊗ Hq(µ2) = O(α2

s (µ
2)) (24)

• Let Hq be an NLO shadow GPD, and Gq be any GPD. Then Gq and
Gq + Hq have the same forward limit, and the same NLO CFF up to
a numerically small and theoretically subleading contribution.
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Shadow GPDs at leading order

• Complete details in [Bertone et al, Phys.Rev.D 103 (2021) 11, 114019]

• We search for our shadow GPDs as simple double distributions (DD) F (β, α, µ2) to
respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can
restrict ourselves to the imaginary part only Im T q(Q2, µ2

0)⊗ Hq(µ2
0) = 0.

• We search our DD as a polynomial of order N in (β, α), characterized by ∼ N2

coefficients cmn:
F (β, α, µ2

0) =
∑

m+n≤N

cmn α
mβn (25)

• Leading order At LO, the imaginary part of the CFF gives

ImT q
LO(Q

2, µ2
0)⊗ Hq(µ2

0) ∝ Hq(+)(ξ, ξ, µ2
0) (26)

and it is easy to build a system of ∼ N equations on the ∼ N2 coefficients cmn of the
polynomial DD and exhibit an infinite number of solutions cancelling the LO CFF.
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Shadow GPDs at next-to-leading order

• First study beyond leading order: Apart from the LO part, the NLO CFF is composed
of a collinear part (compensating the α1

s term resulting from the convolution of the LO
coefficient function with the LO evolution of the GPD) and a genuine 1-loop NLO part.

Hq(ξ,Q2) = Cq
0 ⊗ Hq(+)(µ2

0)+αs(µ
2)Cq

1 ⊗ Hq(+)(µ2
0)+αs(µ

2)Cq
coll ⊗ Hq(+)(µ2

0) log

(
µ2

Q2

)
(27)

An explicit calculation of each term for our polynomial double distribution gives that

Im T q
coll(Q

2, µ2)⊗ Hq(µ2) ∝

αs(µ
2) log

(
µ2

Q2

)[(
3

2
+ log

(
1− ξ

2ξ

))
Im T q

LO ⊗ Hq(µ2) +
N+1∑
w=1

k
(coll)
w

(1 + ξ)w

]
(28)

and assuming Im T q
LO ⊗ Hq(µ2) = 0,

Im T q
1 (Q

2, µ2)⊗ Hq(µ2) ∝ αs(µ
2)

[
log

(
1− ξ

2ξ

)
Im T q

coll ⊗ Hq(µ2) +
N−1∑
w=1

k
(1)
w

(1 + ξ)w

]
(29)

filler
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Shadow GPDs at next-to-leading order

• By linearity of both the CFF convolution and the evolution equation, we can evaluate
separately the contribution to the CFF of a quark shadow NLO GPD under evolution.

• Having cancelled all term of order O(αs), the contribution of NLO shadow GPDs to the
CFF is expected to behave as O(α2

s (µ
2)). We probe this prediction on a lever-arm in Q2

of [1, 100] GeV2 (typical collider kinematics) using the APFEL++ code.

• The fit by α2
s (µ

2) is very good up to values of αs of
the order of its MS values. For larger values, large
logs and higher orders slightly change the picture.

• The numerical effect of evolution remains very
small. For a GPD of order 1, the NLO CFF is only
of order 10−5.
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Shadow GPDs at next-to-leading order

The orange and brown models are Goloskokov-Kroll model + NLO shadow GPDs. For ξ
close to 0 and x close to ξ, by design, they are very close, but vastly different otherwise. They
give rise to NLO CFFs which are exactly identical at this scale, and different by a negligible
amount for expected Q2 lever arm.

ξ = 0.1 (left) and ξ = 0.5 (right) 25 / 34



New models of GPDs

4. New models of GPDs
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New models of GPDs

To go beyond models with limited flexibility and take into account the uncertainty stemming
from shadow GPDs, we built a neural network (NN) parametrization of DDs in [Dutrieux
et al, Eur.Phys.J.C 82 (2022) 3, 252], with emphasis on reproducing polynomiality, shadow
components and positivity constraints. Without positivity,

We give ourselves a GPD diagonal x = ξ (left) and a PDF that we fit with our model. The obtained
GPDs at ξ = 0.1 (middle) and 0.5 (right) are made of the sum of two NNs, one built on the
Radyushkin DD Ansatz (dark red) and one specifically emulating the shadow term (light red).
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New models of GPDs

Introducing the simplified positivity constraint [Radyushkin, 1999], [Pire et al, 1999], [Diehl et
al, 2001], [Pobylitsa, 2002]

|Hq(x , ξ)| ≤

√
1

1− ξ2
f q

(
x − ξ

1− ξ

)
f q

(
x + ξ

1 + ξ

)
(30)

The grey area depicts the positivity exclusion region.
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Perspectives

5. Perspectives
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Perspectives

• Other exclusive processes are sensitive to GPDs, like time-like Compton scattering
(TCS) [Berger et al, 2002]. However, the similar nature of its convolution (see [Müller et
al, 2012]) makes it subject to the similar shadow GPDs issue.

• Deeply virtual meson production (DVMP) [Collins et al, 1997] is also an important
source of knowledge on GPDs, with currently a larger lever arm in Q2. The process
involves form factors of the general form

F(ξ, t) =

∫ 1

0
du

∫ 1

−1

dx

ξ
ϕ(u)T

(
x

ξ
, u

)
F (x , ξ, t) (31)

where ϕ(u) is the leading-twist meson distribution amplitude (DA).

• At LO, the GPD and DA parts of the integral factorize and shadow GPDs cancel the form
factor.

• Situation at NLO remains to be clarified, it is foreseeable new shadow GPDs (dependent
on the DA) could be generated also for this process.
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Perspectives

• New experimental channels: more experimentally challenging processes offer a richer
access to GPDs thanks to more handles with kinematic variables.

• Double deeply virtual Compton scattering (DDVCS) – proposed at JLab with SOLID
(LOI12-15-005) and CLAS12 (LOI12-16-004) – which gives access directly to the (x , ξ) value
of GPDs in the ERBL region at LO.

• Multiparticle production: diphoton [Pedrak et al, 2017], photon-rho [Boussarie et al, 2017]

• Lattice QCD: low order Mellin moments of GPDs do not change significantly the
previously exposed picture, as it is easy to produce shadow GPDs with also a given
number of vanishing Mellin moments.

• Extraction of the x-dependence of parton distributions is an interesting prospects, whose
impact on the current discussion we aim to assess.
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Perspectives

• Reducing uncertainties on CFFs itself is a very useful task. e.g. proton pressure
anisotropy is compatible with 0 largely because of the uncertainty on Re H.

• The proposal to install a positron beam at JLab [Afanasev et al, 2019] can help on this
task. We have performed in [Dutrieux et al, Eur.Phys.J.A 57 (2021) 8, 250] a
reweighting of our neural network replicas of CFFs against simulated new experimental
points.
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Conclusion

• Explicit demonstration of NLO shadow GPDs of considerable size with a very small and
subleading contribution to CFFs. Such shadow GPDs will be hidden in typical
statistical and systematic uncertainties of DVCS. TCS or LO DVMP face similar
issues. We foresee that our discussion can be extended to higher order DVCS. Other
exclusive processes will help discriminate the DVCS shadow GPDs. Especially DDVCS or
Lattice QCD for instance should escape the dimensionality of data problem.

• Potential impact on hadron tomography due to the ξ → 0 extrapolation, impact on the
extraction of hadron mechanical properties.

• An extraction of GPDs with lesser systematic uncertainty requires a multi-channel
analysis, and the development of public integrated analysis tools, like PARTONS
(https://partons.cea.fr) and GeParD (https://gepard.phy.hr).

• More precise data over a much larger Q2 range promised by future colliders will be very
welcome here and for the extraction of mechanical properties as well.

• More theoretical constraints, like positivity will play a significant role in reducing the
uncertainty.
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Conclusion

Thank you for your attention !
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Shadow GPDs at leading order

• For our LO shadow GPD, we first want Hq(+)(ξ, ξ, µ2
0) = 0, so we notice that

Hq(+)(ξ, ξ, µ2
0) =

N+1∑
w=1

kw
(1 + ξ)w

where kw =
∑
u,v

Cuv
w quv , Cuv

w = (−1)u+v+w

(
v

u − w

)

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (32)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (33)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (32)

• We then want Hq(+)(x , ξ = 0, µ2
0) = 0, so we notice that

Hq(+)(x , 0, µ2
0) =

N+1∑
w=0

qwx
w where qw =

∑
u,v

Quv
w quv , Quv

w = 2δvw

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (33)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (32)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (33)

• Both linear systems C .R and Q.R are systems of ∼ N equations for ∼ N2 variables, so
the number of solutions grows quadratically with N, order of the polynomial DD.
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (32)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (33)

LO shadow GPDs

Here is an example of an infinite family of LO shadow DDs, each being of degree N ≥ 9 odd

FN(β,α,µ
2
0)=βN−8

[
α8− 28

9
α6

(
N2−3N+20
(N+1)N

+β2
)
+ 10

3
α4

(
N2−7N+40
(N+1)N

+ 2(N2−3N+44)
3(N+1)N

β2+β4

)

− 4
3
α2

(
N2−11N+60

(N+1)N
−N−8

N
β2−N2−3N−28

(N+1)N
β4+β6

)
+ 1

9
(1−β2)2

(
N2−15N+80

(N+1)N
− 2(N−8)

N
β2+β4

)]
(34)
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Shadow GPDs at next-to-leading order

• Cancelling both terms gives rise to two additional systems with a linear number of
equations. The first NLO shadow GPD is found for N = 21, and adding the condition that
the DD vanishes at the edges of its support gives a first solution for N = 25 (see below).

Color plot of an NLO shadow GPD at initial scale 1 GeV2, and its evolution
for ξ = 0.5 up to 106 GeV2 via APFEL++ and PARTONS [Bertone].
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Neural network modelling of double distributions

Our neural network model for singlet DDs consists of three parts

f q(+)(β, α) = (1− x2)f
q(+)
C (β, α) + (x2 − ξ2)f

q(+)
S (β, α) + ξf

q(+)
D (β, α) (35)

f
q(+)
C =

q(+)(β)

1− β2

ANNC (|β|, α)∫ 1−|β|
|β|−1 ANNC (|β|, α)

(36)

f
q(+)
S (β, α) = q(+)(β)NS

 ANN
(1)
S (|β|, α)∫ 1−|β|

|β|−1 ANN
(1)
S (|β|, α)

−
ANN

(2)
S (|β|, α)∫ 1−|β|

|β|−1 ANN
(2)
S (|β|, α)

 (37)

β
ANN(β,ɑ)

w11(2)

w25(1)

w11(1)

w51(2)

(1) (2) (3)

ɑ
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