

Impact of inclusive light and heavy meson production on nuclear PDFs

Intersections 2022 - Lake Buena Vista

Peter Risse

living.knowledge

Contents

Introduction to the nCTEQ fitting framework

Light meson production

- Motivation
- Selection of fragmentation functions
- The nCTEQ15WZ+SIH Fit

Duwentäster et al, arXiv:2105.09873

Conclusion

Heavy meson production

- Motivation
- The crystal ball function: a data-driven approach
- ► The nCTEQ15HQ Fit

Duwentäster et al, arXiv:2204.09982

nCTEQ nuclear PDFs parametrization

define nuclear PDFs by extending the proton PDF parametrization to account for A-dependence.
 PDF of nucleus (A - mass, Z - charge, N - number of neutrons)

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{N}{A} f_i^{n/A}(x,Q)$$

nCTEQ nuclear PDFs parametrization

define nuclear PDFs by extending the proton PDF parametrization to account for A-dependence.
 PDF of nucleus (A - mass, Z - charge, N - number of neutrons)

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{N}{A} f_i^{n/A}(x,Q)$$

▶ bound proton PDFs are parametrized at Q₀

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

bound neutron PDFs are constructed assuming isospin symmetry from bound proton PDFs

nCTEQ nuclear PDFs parametrization

define nuclear PDFs by extending the proton PDF parametrization to account for A-dependence.
 PDF of nucleus (A - mass, Z - charge, N - number of neutrons)

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{N}{A} f_i^{n/A}(x,Q)$$

▶ bound proton PDFs are parametrized at Q₀

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

bound neutron PDFs are constructed assuming *isospin symmetry* from bound proton PDFs
 A - dependence

$$c_k \rightarrow c_k(\mathbf{A}) \equiv p_k + a_k \left(1 - \mathbf{A}^{-b_k}\right)$$

- nCTEQ15: 740 data points
 - mainly DIS and DY data

- nCTEQ15: 740 data points
 - mainly DIS and DY data
- nCTEQ15WZ: 860 data points
 - added W- and Z-boson production data to nCTEQ15
 - opened up strange quark parameters

- nCTEQ15: 740 data points
 - mainly DIS and DY data
- nCTEQ15WZ: 860 data points
 - added W- and Z-boson production data to nCTEQ15
 - opened up strange quark parameters
- nCTEQ15WZ+SIH: 940 data points
 - \blacktriangleright added π^0 , π^\pm , K^\pm production data to nCTEQ15WZ

- nCTEQ15: 740 data points
 - mainly DIS and DY data
- nCTEQ15WZ: 860 data points
 - added W- and Z-boson production data to nCTEQ15
 - opened up strange quark parameters
- nCTEQ15WZ+SIH: 940 data points
 - ▶ added π^0 , π^{\pm} , K^{\pm} production data to nCTEQ15WZ
- nCTEQ15HQ: 1,488 data points
 - ▶ added J/Ψ , $\Upsilon(1S)$, $\psi(2S)$ and D^0 meson production data to nCTEQ15WZ+SIH

Motivation – Light meson production

Why are we interested in Singe Inclusive Hadron production (SIH) data?

- precise new data from ALICE
- sensitivity to nuclear gluon PDF \rightarrow **dominates cross section** at high CMS-energy (or low p_T)

Motivation - Light meson production

Why are we interested in Singe Inclusive Hadron production (SIH) data?

- precise new data from ALICE
- sensitivity to nuclear gluon PDF \rightarrow **dominates cross section** at high CMS-energy (or low p_T)

Motivation – Light meson production

Why are we interested in Singe Inclusive Hadron production (SIH) data?

- precise new data from ALICE
- sensitivity to nuclear gluon PDF \rightarrow **dominates cross section** at high CMS-energy (or low p_T)

Problems? Fragmentation Function dependence and most precise data at low p_T (non-perturbative!)

Fragmentation Functions

FF	Year	Available particles		
BKK	1994	$\pi_0, \pi^{\pm}, K^{\pm}$		
KKP	2000	π_0, π^\pm, K^\pm		
KRETZER	2000	$\pi_0, \pi^{\pm}, K^{\pm}$		
HKNS07	2007	π_0, π^\pm, K^\pm		
AKK	2008	π_0, π^\pm, K^\pm		
NNFF	2017	$\pi_0, \pi^{\pm}, K^{\pm}$		
JAM20	2021	$\pi_0, \pi^{\pm}, K^{\pm}$		
DSS14	2014	π_0, π^{\pm}		
DSS17	2017	K^{\pm}		
AESSS	2011	η		

Fragmentation Functions

FF	Year	Available particles		
BKK	1994	$\pi_0, \pi^{\pm}, K^{\pm}$		
KKP	2000	π_0, π^\pm, K^\pm		
KRETZER	2000	$\pi_0, \pi^{\pm}, K^{\pm}$		
HKNS07	2007	$\pi_0, \pi^{\pm}, K^{\pm}$		
AKK	2008	π_0, π^\pm, K^\pm		
NNFF	2017	$\pi_0, \pi^{\pm}, K^{\pm}$		
JAM20	2021	$\pi_0, \pi^{\pm}, K^{\pm}$		
DSS14	2014	π_0, π^{\pm}		
DSS17	2017	K^{\pm}		
AESSS	2011	η		

 FF dependence mitigated by taking ratios of cross sections

Available data and fit settings

 $\sqrt{S_{NN}} = 200 \text{ GeV}$ $\sqrt{S_{WW}} = 5020 \text{ GeV}$ $\sqrt{S_{NN}} = 8160 \text{ GeV}$. PHENIX Neutral Pions STAR Neutral Pions PHENIX Eta STAR Eta PHENIX Charged Kaons PHENIX Charged Pions STAR Charged Pions ALICE 5 TeV Neutral Pions ALICE 5 TeV Eta ALICE 5 TeV Charged Kaons ALICE 5 TeV Charged Pions ALICE 8 TeV Neutral Pions ALICE 8 TeV Eta 10^{-1} 100 101 10² *p*₇ [GeV]

DSS fragmentation

- add DSS uncertainty to syst. errors of the data
 - compensate for choice of FF

Available data and fit settings

 $\sqrt{S_{NN}} = 8160 \text{ GeV}$ $\sqrt{S_{WW}} = 200 \text{ GeV}$ • $\sqrt{s_{WW}} = 5020 \text{ GeV}$. PHENIX Neutral Pions DSS fragmentation STAR Neutral Pions PHENIX Eta add DSS uncertainty to syst. STAR Eta * * * * * * * * errors of the data PHENIX Charged Kaons -PHENIX Charged Pions compensate for choice of FF STAR Charged Pions ALICE 5 TeV Neutral Pions ALICE 5 TeV Eta \triangleright cut data below $p_T < 3.0$ GeV ALICE 5 TeV Charged Kaons ALICE 5 TeV Charged Pions **removed** *η*-meson production data ALICE 8 TeV Neutral Pions ALICE 8 TeV Eta 10^{-1} 100 10^{1} 10² *p*₇ [GeV]

Main nCTEQ15WZ+SIH fit – Comparison

$\chi^2/N_{d.o.f.}$ for individual processes								
DIS DY WZ SIH Tota								
nCTEQ15	0.86	0.78	(2.19)	(0.78)*	1.03			
nCTEQ15WZ	0.91	0.77	0.63	(0.47)*	0.83			
nCTEQ15WZ+SIH	0.91	0.77	0.72	0.40	0.83			

*nCTEQ15 and nCTEQ15WZ include STAR and PHENIX neutral pions

Main nCTEQ15WZ+SIH fit – Comparison

$\chi^2/N_{d.o.f.}$ for individual processes								
DIS DY WZ SIH Total								
nCTEQ15	0.86	0.78	(2.19)	(0.78)*	1.03			
nCTEQ15WZ	0.91	0.77	0.63	(0.47)*	0.83			
nCTEQ15WZ+SIH	0.91	0.77	0.72	0.40	0.83			

 χ^2 values of the light meson production data obtained by using different fragmentation functions

DSS	DSS (errors not added)	KKP	BKK	NNFF	JAM20
0.402	0.461	0.401	0.420	0.456	0.553

*nCTEQ15 and nCTEQ15WZ include STAR and PHENIX neutral pions

Main nCTEQ15WZ+SIH fit – Extending the nCTEQ15WZ result

Conclusion (part 1 out of 2)

Light meson production data

- important to account for fragmentation function uncertainty
- \blacktriangleright data needs to be $cut\ below\ \mathbf{p}_{\mathrm{T}}=3GeV$ to ensure validity of theoretical predictions
- Single Inclusive Hadron data still helps to constrain gluons
 - new release: nCTEQ15WZ+SIH supersedes nCTEQ15WZ

Motivation – Heavy meson production

Why are we interested in quarkonium and open heavy flavour meson production data?

- large available data sets from multiple LHC experiments
- \blacktriangleright sensitivity to gluon pdf down to very low $x\approx 10^{-5}$ values

Analysis also includes $\Upsilon(1S), \, \psi(2S)$ and D^0 meson production.

Motivation – Heavy meson production

Why are we interested in quarkonium and open heavy flavour meson production data?

- large available data sets from multiple LHC experiments
- \blacktriangleright sensitivity to gluon pdf down to very low $x\approx 10^{-5}$ values
- interesting data-driven approach
 - understanding of quarkonium production is limited in pQCD
 - fast calculation
 - provides an estimate for theory uncertainties
 - potentially applicable for many singe-inclusive particle production processes

[A. Kusina et al., PRL 121 (2018) 052004; PRD 104 (2021) 014010]

Analysis also includes $\Upsilon(1S), \, \psi(2S)$ and D^0 meson production.

Data-driven approach – the crystal ball function

$$\sigma(AB \to \mathcal{Q} + X) = \int \mathrm{d}x_1 \, \mathrm{d}x_2 f_{1,g}(x_1) f_{2,g}(x_2) \frac{1}{2\hat{s}} \overline{\left|\mathcal{A}_{gg \to \mathcal{Q} + X}\right|^2} \mathrm{dPS}$$

Data-driven approach – the crystal ball function

Data-driven approach – the crystal ball function

$$\sigma(AB \to Q + X) = \int dx_1 \ dx_2 f_{1,g}(x_1) \ f_{2,g}(x_2) \frac{1}{2\hat{s}} \overline{|\mathcal{A}_{gg \to Q+X}|^2} dPS$$

$$(AB \to Q + X) = \int dx_1 \ dx_2 f_{1,g}(x_1) \ f_{2,g}(x_2) \frac{1}{2\hat{s}} \overline{|\mathcal{A}_{gg \to Q+X}|^2} dPS$$

$$(DGLAP \text{ Evolution to } Q_i \quad \text{nuc. data at } Q_i \quad \text{pp-collision data}$$

$$(Dbservable at \ Q_i \quad \text{nuc. data at } Q_i \quad \text{pp-collision data}$$

$$(Agg \to Q+X)^2 = \begin{cases} \frac{\lambda^2 \kappa \hat{s}}{M_Q^2} \exp\left(-\kappa \frac{p_T^2}{M_Q^2} + a|y|\right) \\ \frac{\lambda^2 \kappa \hat{s}}{M_Q^2} \exp\left(-\kappa \frac{\langle p_T \rangle^2}{M_Q^2} + a|y|\right) \\ \frac{\lambda^2 \kappa \hat{s}}{M_Q^2} \exp\left(-\kappa \frac{\langle p_T \rangle^2}{M_Q^2} + a|y|\right) \left(1 + \frac{\kappa}{n} \frac{p_T^2 - \langle p_T \rangle^2}{M_Q^2}\right)^{-n} \quad \text{if } p_T > \langle p_T \rangle$$

Fitting the crystal ball parameters from proton data

▶ Impose cuts to remove proton data with $p_T < 3 \, \text{GeV}$ and outside of $-4 \leq y_{\text{c.m.s.}} \leq 4$

	D^0	J/ψ	$B\to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \to \psi(2S)$
$N_{\rm points}$	34	501		375	55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77	

Fitting the crystal ball parameters from proton data

lmpose cuts to remove proton data with $p_T < 3 \text{ GeV}$ and outside of $-4 \le y_{\text{c.m.s.}} \le 4$

Proton baseline – comparison with GMVFNS

KKKS08 fragmentation functions

• Base scale
$$\mu_r = \mu_i = \mu_f = \sqrt{p_T^2 + 4m_c^2}$$

• Uncertainties due to individual scale variations by factor 2 or $\frac{1}{2}$

- ▶ include all data from nCTEQ15WZ+SIH
- ▶ use the same open parameters as nCTEQ15WZ+SIH

- include all data from nCTEQ15WZ+SIH
- use the same open parameters as nCTEQ15WZ+SIH
- \blacktriangleright cut heavy meson production data below $p_{\rm T} < 3.0\,\mbox{GeV}$ and outside $-4 \leq y_{c.m.s.} \leq 4$
 - same as proton-proton baseline
 - ▶ 548 new data points
 - add Crystal Ball uncertainty to data systematics

- include all data from nCTEQ15WZ+SIH
- use the same open parameters as nCTEQ15WZ+SIH
- \blacktriangleright cut heavy meson production data below $p_{\rm T} < 3.0\,\mbox{GeV}$ and outside $-4 \leq y_{c.m.s.} \leq 4$
 - same as proton-proton baseline
 - ▶ 548 new data points
 - add Crystal Ball uncertainty to data systematics

$\chi^2/N_{d.o.f.}$ for individual processes								
DIS DY WZ SIH HQ Tota								
nCTEQ15	0.86	0.78	(2.19)	(0.78)*	(1.96)	1.23		
nCTEQ15WZ	0.91	0.77	0.63	(0.47)*	(0.92)	0.90		
nCTEQ15WZ+SIH	0.91	0.77	0.72	0.40	(0.93)	0.92		
nCTEQ15HQ	0.93	0.77	0.78	0.40	0.77	0.86		

*nCTEQ15 and nCTEQ15WZ include STAR and PHENIX neutral pions

nCTEQ15HQ Fit – Ratio to Proton

Conclusion

Light meson production data

- important to account for fragmentation function uncertainty
- \blacktriangleright data needs to be $cut\ below\ p_{T}=3GeV$ to ensure validity of theoretical predictions
- Single Inclusive Hadron data still helps to constrain gluons
 - new release: nCTEQ15WZ+SIH supersedes nCTEQ15WZ

Heavy meson production data

- new data driven approach
 - compatible predictions from NRQCD and GMVFNS, excellent description of proton data
 - controlled uncertainties
- \blacktriangleright strong new constraints on the gluon PDF, particularly at low ${\bf x}$
 - new release: nCTEQ15HQ supersedes nCTEQ15WZ+SIH

Impact of inclusive light and heavy meson production on nuclear PDFs

backup

Main nCTEQ15WZ+SIH fit – Theory Predictions

Proton baseline – comparison with NRQCD

Calculations by Mathias Butenschoen, Bernd Kniehl [M. Butenschoen et al., Nucl.Phys.B Proc.Suppl. 222-224 (2012) 151-161]

▶ Base scale $\mu_{r,0} = \mu_{f,0} = \sqrt{p_T^2 + 4m_c^2}$ and $m_{\rm NRQCD,0} = m_c$

▶ NRQCD Uncertainties due to scale variations: $1/2 < \mu_r/\mu_{r,0} = \mu_f/\mu_{f,0} = \mu_{NRQCD}/\mu_{NRQCD,0} < 2$