CPV measurements from LHCb

Andrea Villa (University of Bologna)

on behalf of the LHCb collaboration

CIPANP - 30 Aug 2022

Overview

- Charm physics:
 - $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ (Run 2) [arXiv:2208.0651]
 - y_{CP} y^{Kπ}_{CP} (Run 2) [Phys. Rev. D 105 (2022)]
 - $A_{CP}(D^0 \rightarrow K^+ K^-)$ (Run 2) [LHCB-PAPER-2022-024] in preparation
- Beauty physics:
 - CPV in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ (Run 2) [arXiv:2206.07622] [arXiv:2206.02038]
 - \widehat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ (Run 1+2) [arXiv:2205.08973]

The LHCb detector

- Single-arm forward spectrometer
- Designed to study *b* and *c*-hadron decays
- VErtex LOcator (VELO): IP resolution, secondary vertices reconstruction
- Ring Imaging CHerenkov (RICH): Particle IDentification (PID)
- Bending magnet, tracking stations, muon stations, calorimeters...
- Data collection:
 - Run 1: $\mathcal{L} = 3 \text{ fb}^{-1}, \sqrt{s} = 7-8 \text{ TeV}$
 - Run 2: $\mathcal{L} = 6 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$

Measurement of charm-mixing parameters with $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decays

Measurement of charm-mixing parameters with $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decays

• Oscillations between $D^0 - \overline{D}^0$ mesons can be described with two dimensionless parameters:

$$m{x}=(m_1-m_2)m{c}^2/\Gamma$$

 $m{y}=(\Gamma_1-\Gamma_2)/2\Gamma$

• If *CP* is violated due to mixing $(|q/p| \neq 1)$, the following observables can be defined:

$$\begin{aligned} x_{CP} &= \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ y_{CP} &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta x &= \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ \Delta y &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \end{aligned}$$

Notation:
mass eigenstates

$$|D_{1,2}\rangle = p \left| D^0 \right\rangle \pm q \left| \overline{D}^0 \right\rangle$$

 $|p|^2 + |q|^2 = 1$
 $\Gamma = (\Gamma_1 + \Gamma_2)/2$
 $\phi = \arg\left(\frac{q\overline{A}_f}{pA_f}\right)$

- The self-conjugate decay $D^0 \to K_s^0 \pi^+ \pi^-$ provides access both to charm-mixing and *CP*-violating parameters.
- A LHCb analysis with prompt $D^{*\pm} \rightarrow D^0 (\rightarrow K_s^0 \pi^+ \pi^-) \pi^{\pm}$ decays provided the first evidence of $x \neq 0$ $(m_1 \neq m_2)$ [Phys. Rev. Lett. 127 (2021)]
- Complementary measurement using semileptonic decays $\overline{B} \to D^0(\to K_s^0 \pi^+ \pi^-) \mu^- \overline{\nu}_{\mu} X$ with the bin-flip method [arXiv:2208.0651]

Measurement of charm-mixing parameters with $D^0 o K^0_s \pi^+\pi^-$ decays Analisys strategy

 Bin-flip method: fit the ratio of signal yields in Dalitz bin ±b and decay-time bin j with this formula
 [Phys. Rev. D 99 (2019)]

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4}r_b \left\langle t^2 \right\rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \left\langle t^2 \right\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \left\langle t \right\rangle_j \operatorname{Re}[X_B^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \left\langle t^2 \right\rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \left\langle t^2 \right\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \left\langle t \right\rangle_j \operatorname{Re}[X_B(z_{CP} \pm \Delta z)]}$$

from which can be extracted

$$X_{CP} = -\operatorname{Im}(Z_{CP}), \quad \Delta x = -\operatorname{Im}(\Delta z)$$

 $y_{CP} = -\operatorname{Re}(Z_{CP}), \quad \Delta y = -\operatorname{Re}(\Delta z)$

$$\begin{array}{l} \pm: \text{ flavour of } D^0/\overline{D}^0 \\ r_b: \text{ ratio of yields in bin } -b \\ \text{and } +b \\ \langle t \rangle_j: \text{ average decay-time in } \\ \text{bin } j \\ z_{CP} \pm \Delta z = -(q/p)^{\pm 1}(y+ix) \end{array}$$

- Binning chosen to have constant strong phase difference between D^0 and \overline{D}^0 [Phys. Rev. D 82 (2010)]
- 10 equipopulated *D*⁰ decay time bins
- Signal yields: 1.2×10^6

Measurement of charm-mixing parameters with $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decays Results [arXiv:2208.0651]

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays Theory and strategy

- Due to mixing, Cabibbo Suppressed (CS) decays such as D⁰ → K⁺K⁻ or D⁰ → π⁺π⁻ proceed with effective decay widths Γ ≠ Γ
- The ratio of $D^0 \rightarrow h^+ h^-$ and $D^0 \rightarrow K^- \pi^+$ decay rates can deviate from 1:

$$y_{CP}^{hh} - \underbrace{y_{CP}^{K\pi}}_{\approx -0.04\%} \approx \frac{\widehat{\Gamma}(D^0 \to h^+ h^-) + \widehat{\Gamma}(\overline{D}^0 \to h^+ h^-)}{\widehat{\Gamma}(D^0 \to K^- \pi^+) + \widehat{\Gamma}(\overline{D}^0 \to K^+ \pi^-)} - 1$$

Measuring $y_{CP} - y_{CP}^{K\pi}$ allows to put tight constraints on the value of $y = (\Gamma_1 - \Gamma_2)/2\Gamma$

- At LHCb, a new measurement of $y_{CP} y_{CP}^{K\pi}$ was performed with high-statistics prompt $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays [Phys. Rev. D 105 (2022)]
- Measure the ratio

$$\mathcal{R}^{hh}(t) = \frac{\mathcal{N}(D^0 \to h^+ h^-, t)}{\mathcal{N}(D^0 \to K^- \pi^+, t)} \propto e^{-(y_{CP}^{hh} - y_{CP}^{K\pi})t/\tau_{D^0}} \frac{\varepsilon(hh, t)}{\varepsilon(K^- \pi^+, t)}$$

and combine $y_{CP}^{KK} - y_{CP}^{K\pi}$ with $y_{CP}^{\pi\pi} - y_{CP}^{K\pi}$ to obtain $y_{CP} - y_{CP}^{K\pi}$

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays Results [Phys. Rev. D 105 (2022)]

- The analysis is validated with $R^{CC}(t) = \frac{N(D^0 \to \pi^+\pi^-, t)}{N(D^0 \to K^+K^-, t)} \propto e^{y_{CP}^{CC}t/\tau_{D^0}} \frac{\varepsilon(\pi^+\pi^-, t)}{\varepsilon(K^+K^-, t)}$ (Should get $y_{CP}^{CC} = 0$)
- A new method of kinematic matching and reweighting was developed to equalize the time-dependent efficiencies of $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ decays

• To be compared with the world average value of $y = (6.15^{+0.56}_{-0.55}) \times 10^{-3}$

[HFLAV]

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays

Results and combination

[Phys. Rev. D 105 (2022)]

 $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$

- The result is 4 times more precise than the previous world average
- LHCb charm measurements are combined to obtain updated constraints on *y*

 $y = (6.46^{+0.24}_{-0.25}) \times 10^{-3}$

2 times more precise than previous estimate

CP asymmetry measurement with $D^0 ightarrow K^+K^-$ decays

CP asymmetry measurement with $D^0 \rightarrow K^+ K^-$ decays

• For final state
$$f$$
, $A_{CP}(f) \approx a_f^d + \frac{\langle t \rangle_f}{\tau_{D^0}} \Delta Y_f$, where [Phys. Rev. D 103 (2021)]
 $a_f^d = \frac{|A_f|^2 - |\overline{A}_f|^2}{|A_f|^2 + |\overline{A}_f|^2}, \qquad \Delta Y_f \approx \frac{\widehat{\Gamma}(\overline{D}^0 \to f) - \widehat{\Gamma}(D^0 \to f)}{2}$
• Starting from the 2019 result (first observation of CPV in charm decays) [Phys. Rev. Lett. 122 (2019)]

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$
$$= a^d_{KK} - a^d_{\pi\pi} + \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{\tau_{D^0}} \Delta Y$$

and the Run 1 LHCb measurement:

$$A_{CP}(KK) = (4 \pm 12 \pm 10) \times 10^{-4}$$

- Provide an updated measurement of $A_{CP}(D^0 \rightarrow K^+K^-)$ with full Run 2 dataset ($\mathcal{L} = 5.7 \text{ fb}^{-1}$)
- Combination with ΔA_{CP} and time-dependent measurements gives access to a_{KK}^d and $a_{\pi\pi}^d$

[LHCB-PAPER-2022-024] in preparation Talk by S. Maccolini at ICHEP 2022

CP asymmetry measurement with $D^0 \to K^+ K^-$ decays $_{\text{Analysis strategy}}$

Measure the raw asymmetry and subtract experimental asymmetries:

$$\mathcal{A}(D^{0} \to K^{+}K^{-}) = \frac{\mathcal{N}(D^{0} \to K^{+}K^{-}) - \mathcal{N}(\overline{D}^{0} \to K^{+}K^{-})}{\mathcal{N}(D^{0} \to K^{+}K^{-}) + \mathcal{N}(\overline{D}^{0} \to K^{+}K^{-})} = \underbrace{\mathcal{A}_{CP}(D^{0} \to K^{+}K^{-})}_{target} + \underbrace{\mathcal{A}_{prod}(D^{0}) + \mathcal{A}_{det}(\pi_{soft}^{\pm})}_{nuisance}$$

• Exploit high-statistics D^{\pm} and D_s^{\pm} decays (negligible CPV) to correct nuisance asymmetries

$$\begin{aligned} \mathbf{C}_{D+}: \quad & A_{CP}(D^0 \to K^-K^+) = +A(D^{*+} \to (D^0 \to K^-K^+)\pi^+_{seff}) - A(D^{*+} \to (D^0 \to K^-\pi^+)\pi^+_{seff}) \\ & +A(D^+ \to K^-\pi^+\pi^+) - \left[A(D^+ \to \overline{K}^0\pi^+) - A(\overline{K}^0)\right] \end{aligned}$$

$$\begin{aligned} \mathbf{C}_{Ds+}: \quad A_{CP}(D^0 \to K^-K^+) &= +A(\underline{D}^{*+} \to (D^0 \to K^-K^+)\pi^+_{sof}) - A(\underline{D}^{*+} \to (D^0 \to K^-\pi^+)\pi^+_{sof}) \\ &+ A(\underline{D}^+_s \to \phi\pi^+) - \left[A(\underline{D}^+_s \to \overline{K}^0 K^+) - A(\overline{K}^0)\right] \end{aligned}$$

Apply reweighting so that same-colored particles have identical kinematic distributions

14/27

· Results for the two modes are:

$$\begin{aligned} C_{D^+}: \quad A_{CP}(KK) &= (13.6 \pm 8.8 \pm 1.6) \times 10^{-4} \\ C_{D_s^+}: \quad A_{CP}(KK) &= (2.8 \pm 6.7 \pm 2.0) \times 10^{-4} \end{aligned}$$

• With correlation $\rho = 0.06$, and their combination is

$$A_{CP}(KK) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$$

 a_{q}^{q}

$$a^d_{KK} = (\ 7.7 \pm 5.7) imes 10^{-4} \ a^d_{\pi\pi} = (23.2 \pm 6.1) imes 10^{-4}$$

• Giving the first evidence of direct *CP* violation in $D^0 \rightarrow \pi^+\pi^-$ decays (3.8 σ)

Combination sources [JHEP 07 (2014)] [Phys. Rev. Lett. 116 (2016)] [Phys. Lett. B 767 (2017)] [Phys. Rev. Lett. 122 (2019)] [Phys. Rev. D 104 (2021)]

E791

Measurement of CP asymmetries

- Study of phase-space integrated and localised CP asymmetries across the Dalitz plane of charmless thee-body B^{\pm} decays
 - Already observed global and localised CP-violation across the Dalitz plane
 - $\pi \pi \longleftrightarrow KK$ rescattering at play
 - Interference of *S* and *P*-wave in $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$
 - Test *U*-spin symmetry prediction that $\frac{\Delta\Gamma(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-})}{\Delta\Gamma(B^{\pm} \to \pi^{\pm}\pi^{+}K^{+}K^{-})} = \frac{\Delta\Gamma(B^{\pm} \to K^{\pm}K^{+}K^{-})}{\Delta\Gamma(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-})} = -1$

[arXiv:2206.07622] [Phys. Rev. D 90]

[Phys. Rev. D 101] [Phys. Rev. Lett. 124]

Measured quantity:

$$A_{CP} = \frac{A_{raw}^{corr} - A_P}{1 - A_{raw}^{corr} A_P}$$

- $A_{raw}^{corr} = \frac{N_{B^-}/\varepsilon^- N_{B^+}/\varepsilon^+}{N_{B^-}/\varepsilon^- + N_{B^+}/\varepsilon^+}$: efficiency-corrected B^{\pm} signal yields ratio
- A_P : B^{\pm} production asymmetry from control sample

$$A_P = A_{raw}^{corr}(B^{\pm} \to J/\psi K^{\pm}) - \underbrace{A_{CP}(B^{\pm} \to J/\psi K^{\pm})}_{0.0018 \pm 0.0030} = -0.0070 \pm 0.0008^{+0.0007}_{-0.0008} \pm 0.0030$$

Decay mode	Total yield	$A_{\rm raw}$	$R = <\epsilon^- > / <\epsilon^+ >$
$B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$	499200 ± 900	0.006 ± 0.002	1.0038 ± 0.0027
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	365000 ± 1000	-0.052 ± 0.002	0.9846 ± 0.0024
$B^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$	101000 ± 500	0.090 ± 0.004	1.0354 ± 0.0037
$B^\pm \to \pi^\pm K^+ K^-$	32470 ± 300	-0.132 ± 0.007	0.9777 ± 0.0032

Integrated CP asymmetries

[arXiv:2206.07622]

 $A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = (-11.4 \pm 0.7 \pm 0.3 \pm 0.3_{J/\psi})\% \text{ (13.6} \sigma\text{)}$

Localised CP asymmetries

- Repeat the measurement in 9 regions of the Dalitz planes looking for local CP violation
- A rich landscape of large local asymmetries shows up

Localised CP asymmetries

[arXiv:2206.07622]

- Observed very high CP-violating effects in many regions
- Sizeable $\chi_{c0}(1P)$ contribution found in the $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ spectra

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$	Nsig	Araw	A_{CP}
Region 1	14330 ± 150	$+0.309 \pm 0.009$	$+0.303 \pm 0.009 \pm 0.004 \pm 0.003$
Region 2	4850 ± 130	-0.287 ± 0.017	$-0.284 \pm 0.017 \pm 0.007 \pm 0.003$
Region 3	2270 ± 60	$+0.747 \pm 0.027$	$+0.745 \pm 0.027 \pm 0.018 \pm 0.003$
$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$			
Region 1	41980 ± 280	$+0.201 \pm 0.005$	$+0.217 \pm 0.005 \pm 0.005 \pm 0.003$
Region 2	27040 ± 250	-0.149 ± 0.007	$-0.145 \pm 0.007 \pm 0.006 \pm 0.003$
$B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$			
Region 1	11430 ± 170	-0.363 ± 0.010	$-0.358 \pm 0.010 \pm 0.014 \pm 0.003$
Region 2	2600 ± 120	$+0.075 \pm 0.031$	$+0.097 \pm 0.031 \pm 0.005 \pm 0.003$
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$			
Region 1	76020 ± 350	-0.189 ± 0.004	$-0.178 \pm 0.004 \pm 0.004 \pm 0.003$
Region 2	37440 ± 320	$+0.030\pm0.005$	$+0.043 \pm 0.005 \pm 0.004 \pm 0.003$

 $A_{CP}(B^{\pm}
ightarrow \pi^{\pm}\pi^{+}\pi^{-}) = (74.5 \pm 2.7 \pm 1.8 \pm 0.3)\%$

Predictions of U-spin symmetry are tested and confirmed

$$\frac{\Delta\Gamma(B^{\pm}\to\pi^{\pm}K^{+}K^{-})}{\Delta\Gamma(B^{\pm}\to K^{\pm}\pi^{+}\pi^{-})} = -0.92\pm0.18$$

$$\frac{\Delta\Gamma(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-})}{\Delta\Gamma(B^{\pm} \to K^{\pm}K^{+}K^{-})} = -1.06 \pm 0.08$$

Amplitude analysis of $B \rightarrow PV$ decays

- Is also possible to study the resonant structure of B[±] → V(→ h₁⁻ h₂⁺)h₃[±] decays with a model-independent approach
 [arXiv:2206.02038]

 - Investigate the role of long- and short-distance contributions in direct CP violation
- Resonances under investigation:
 - $\circ ~B^{\pm} \rightarrow \rho (770)^0 K^{\pm}$
 - $\circ B^{\pm} \rightarrow K^* (892)^0 \pi^{\pm}$
 - $\circ ~B^{\pm} \rightarrow \phi(1020) K^{\pm}$
 - $\circ B^{\pm} \rightarrow \rho(770)^0 \pi^{\pm}$

$$\circ B^{\pm} \rightarrow K^* (892)^0 K^{\pm}$$

• For isolated and narrow resonances, the decay amplitude can be approximated as a quadratic polynomial:

$$|\mathcal{M}_{\pm}|^{2} = \underbrace{p_{0}^{\pm}}_{\text{Scalar CPV}} + \underbrace{p_{1}^{\pm}\cos\theta(m_{V}^{2}, s_{\perp})}_{\text{Scalar + Vector interf.}} + \underbrace{p_{2}^{\pm}\cos^{2}\theta(m_{V}^{2}, s_{\perp})}_{\text{Vector CPV}}$$

• Measuring p_2^{\pm} with a polynomial fit, CPV can be tested with

$$A_{CP} = \frac{|\mathcal{M}_{-}|^{2} - |\mathcal{M}_{+}|^{2}}{|\mathcal{M}_{-}|^{2} + |\mathcal{M}_{+}|^{2}} = \frac{p_{2}^{-} - p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}$$

Notation:

$$s_{\parallel} = m^2(h_1^+h_2^+)$$

 $s_{\perp} = m^2(h_1^+h_3^\pm)$
 $\theta = \widehat{h_1^+h_3^\pm}$

 $B^\pm
ightarrow
ho$ (770) $^0 K^\pm$ polynomial fit

[arXiv:2206.02038]

 $A_{CP} = (15.0 \pm 1.9 \pm 1.1)\%, \quad (6.8\sigma)$

- Candidates are selected with $s_{\parallel} = m^2(\pi^+\pi^-)$ within 150 MeV of the nominal $\rho(770)^0$ mass
- $\rho(770)^0 \omega(782)$ mixing effects cannot be excluded with this method
- First observation of *CP* violation in $B^{\pm} \rightarrow \rho(770)^{0} K^{\pm}$
- All other resonances give results compatible with *CP* symmetry conservation
- Some measurements are in slight tension with results from BaBar and Belle

[Phys. Rev. D 78 (2008)] [Phys. Rev. D 71 (2005)]

Decay channel	This work	Previous measurements	
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-)\pi^{\pm}$	$-0.004\pm0.017\pm0.009$	$+0.007 \pm 0.011 \pm 0.016 \; (\text{LHCb} \; [20,21])$	
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-)K^{\pm}$	$+0.150\pm 0.019\pm 0.011$	+0.44 ± 0.10 ± 0.04 (BaBar [42]) +0.30 ± 0.11 ± 0.02 (Belle [22])	2.9σ (stat only)
$B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^{\pm} \pi^{\mp}) \pi^{\pm}$	$-0.015\pm 0.021\pm 0.012$	+0.032 ± 0.052 ± 0.011 (BaBar [42]) -0.149 ± 0.064 ± 0.020 (Belle [22])	- 2.6 σ (stat only)
$B^\pm \rightarrow (\ K^*(892)^0 \ \rightarrow K^\pm \pi^\mp) K^\pm$	$+0.007\pm0.054\pm0.032$	$+0.123 \pm 0.087 \pm 0.045 \; (LHCb \; [19])$	
$B^{\pm} \rightarrow (\phi(1020) \rightarrow K^{+}K^{-})K^{\pm}$	$+0.004\pm 0.010\pm 0.007$	+0.128 \pm 0.044 \pm 0.013 (BaBar [26]) \blacktriangleleft	2.8 σ (stat only)

Search for *CP* violation using \widehat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ decays

Search for *CP* violation using \hat{T} -odd correlations in $B^0 \rightarrow p\overline{p}K^+\pi^-$ decays Theory and strategy

- Search for *CP* and *P* violation by studying triple-products asymmetries
- Baryonic multibody decay ⇒ interference between different amplitudes, expected large CP asymmetries [Phys. Rev. Lett. 98 (2007)] [Eur. Phys. J. C 80 (2020)]
- Found evidence for CPV in $B^+ o p\overline{p}K^+$ decays [Phys. Rev. Lett. 113 (2014)]
- Define the \hat{T} -odd triple-products:

$$C_{\widehat{7}}=ec{
ho}_{K^+}\cdot(ec{
ho}_{\pi^-} imesec{
ho}_{
ho}), \quad \overline{C}_{\widehat{7}}=ec{
ho}_{K^-}\cdot(ec{
ho}_{\pi^+} imesec{
ho}_{\overline{
ho}})$$

• The corresponding asymmetries are $(N.B. CP(C_{\widehat{T}}) = -\overline{C}_{\widehat{T}}, N = N(B^0), \overline{N} = N(\overline{B^0}))$

$$\frac{N(C_{\widehat{\tau}} > 0) - N(C_{\widehat{\tau}} < 0)}{\overline{A}_{\widehat{\tau}}} = \frac{\overline{N}(-\overline{C}_{\widehat{\tau}} > 0) - \overline{N}(-\overline{C}_{\widehat{\tau}} < 0)}{\overline{N}(-\overline{C}_{\widehat{\tau}} < 0)}$$

$$A_{\widehat{\tau}} = \frac{1}{N(C_{\widehat{\tau}} > 0) + N(C_{\widehat{\tau}} < 0)}, \quad A_{\widehat{\tau}} = \frac{1}{\overline{N}(-\overline{C}_{\widehat{\tau}} > 0) + \overline{N}(-\overline{C}_{\widehat{\tau}} < 0)}$$

• The CP- and P-violating observables are then:

$$a_{CP}^{\widehat{7} ext{-odd}} = rac{1}{2}(A_{\widehat{7}} - \overline{A}_{\widehat{7}}), \quad a_{P}^{\widehat{7} ext{-odd}} = rac{1}{2}(A_{\widehat{7}} + \overline{A}_{\widehat{7}})$$

mostly insensitive to production and detection asymmetries \Longrightarrow clean observables \checkmark

[arXiv:2205.08973]

Search for *CP* violation using \widehat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ decays

Phase-space integrated results

[arXiv:2205.08973]

• Signal yields: 70×10^3

Results:

 $a_{CP}^{\widehat{T} ext{-odd}} = (0.51 \pm 0.85 \pm 0.08)\%$ $a_{P}^{\widehat{T} ext{-odd}} = (1.49 \pm 0.85 \pm 0.08)\%$

- Compatible with *P* and *CP* conservation
- Statistically limited

Search for *CP* violation using \widehat{T} -odd correlations in $B^0 \rightarrow p\overline{p}K^+\pi^-$ decays Phase-space regions results [arXiv:2205.08973]

- Perform the measurements also in regions of phase-space to improve sensitivity to resonances and interference effects
- Use two different binnings in $m(K^+\pi^-)$, $m(p\overline{p})$, $\cos\theta_{K\pi}$, $\cos\theta_{p\overline{p}}$, and ϕ , with 24 and 40 bins

consistent with *P* symmetry violation at 5.8σ

Summary

- Many new searches for CP violation in charm and beauty decays by LHCb were presented
- First evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decays
- Observed CPV for the first time in several decays:

$$\circ B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$$

$$\circ B^{\perp} \to K^{\perp}K^{+}K^{-}$$

- $\circ B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$
- Precision on charm mixing observables is starting to reach below the per-mille level
 - Look deeply into the origin of CP violation in the charm sector
 - Search for New Physics phenomena mediated by massive virtual particles
- Some analyses are statistically limited \implies Run 3 will bring a lot more data to study
- Stay tuned for even more precise results! •

Backup

Measurement of charm-mixing parameters with $D^0 o K^0_s \pi^+\pi^-$ decays Decorrelation

- Any correlation between Dalitz variables and decay-time must be suppressed
- Larger correlation given by online software selection of events
- Correct for it by evaluating online selection efficiency with simulation and applying inverse as weight to data

Measurement of charm-mixing parameters with $D^0 o K_s^0 \pi^+ \pi^-$ decays

Systematic uncertainties

- Systematics much smaller than statistical uncertainties
- Estimated by running pseudo-experiments with the error source added to data and with a correction applied, and by taking the residual

Source	$x_{C\!P}$ [10 ⁻³]	$y_{C\!P}~[10^{-3}]$	$\Delta x \ [10^{-3}]$	$\Delta y ~[10^{-3}]$
Reconstruction and selection	0.06	0.79	0.28	0.24
Detection asymmetry	0.06	0.03	0.01	0.09
Mass-fit model	0.03	0.09	0.01	0.01
Unrelated $D^0\mu$ combinations	0.24	0.22	0.01	0.05
Total systematic	0.26	0.83	0.28	0.26
Strong phase inputs	0.32	0.68	0.16	0.21
Statistical (w/o phase inputs)	1.45	3.04	0.92	1.91
Statistical	1.48	3.12	0.93	1.92

 External inputs on the strong phase differences in the 8 Dalitz bins are included into the statistical uncertainties [Phys. Rev. D 82 (2010)] [Phys. Rev. D 101 (2020)] Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays why $y_{CP} - y_{CP}^{K\pi}$?

• In previous measurements of y_{CP} the decay width of D⁰ mesons was approximated by

$$\Gamma\approx\frac{\hat{\Gamma}(D^{0}\rightarrow K^{-}\pi^{+})+\hat{\Gamma}(\overline{D^{0}}\rightarrow K^{-}\pi^{+})}{2}$$

• Can be shown that $y_{CP}^{K\pi} = \frac{\hat{\Gamma}(D^0 \to K^- \pi^+) + \hat{\Gamma}(\overline{D^0} \to K^- \pi^+)}{2\Gamma} \approx \sqrt{R_D} (x_{12} \cos \phi_2^M \sin \Delta_{K\pi} - y_{12} \cos \phi_2^\Gamma \cos \Delta_{K\pi})$, with

$$\sqrt{R_{D}} = rac{\sqrt{\mathcal{B}(D^{0} o K^{+}\pi^{-})}}{\sqrt{\mathcal{B}(D^{0} o K^{-}\pi^{+})}} = (5.87 \pm 0.02) imes 10^{-2}$$

And therefore,

$$\frac{\hat{\Gamma}(D^{0} \to f) + \hat{\Gamma}(\overline{D^{0}} \to f)}{\hat{\Gamma}(D^{0} \to K^{-}\pi^{+}) + \hat{\Gamma}(\overline{D^{0}} \to K^{-}\pi^{+})} \approx (1 + y_{CP})(1 - y_{CP}^{K\pi}) - 1$$
$$\approx y_{CP} - y_{CP}^{K\pi}$$

- According to predictions, $y_{\it CP}^{\it K\pi}\approx -3.5\times 10^{-4}$

[JHEP 162 (2022)]

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 decays

Kinematic matching and weighting

CENTRE-OF-CENTRE-OF MASS FRAME MASS FRAME LAB FRAME LAB FRAME ⁰*(π⁺) Equalize the decay-time reconstruction $\vec{p}^{*}(K^{+})$ 0ח efficiencies by transforming a D⁰ D^0 $\vec{p}(D^0)$ $\vec{v}(D^0)$ $D^0
ightarrow K^+ K^-$ or $D^0
ightarrow \pi^+ \pi^-$ decays into $\vec{p}^*(K^-) = -\vec{p}^*(\pi)$ $\vec{p}^{*}(K^{-})$ $= - \vec{v}^{*}(K)$ a $D^0 \rightarrow K^- \pi^+$ After matching, apply $D^{2} \rightarrow K^{-} K$ $D^{2} \rightarrow S^{-} S$ $\bullet D^{0} \rightarrow K^{-}K^{-}$ $D^{0} \rightarrow \pi^{-}\pi^{-}$ natched $p_{T}(K^{-})$ [GeV/c] reweighting of p, p_T and η of Candidates LHCb 20.015 2017 MagUp 10^{2} the D^0 and the final-state $D^0 \rightarrow K^- K^+$ particles cose^{*}(h⁻ cose (h) 10 By cutting on the matched 0.9 • $D^0 \rightarrow K^- \pi$ $\downarrow D^{0} \rightarrow K^{-} \pi$ variables you get equal 0.8 efficiencies for $D^0 \rightarrow K^+ K^-$ 0.7∟ 0.7 and $D^0 \rightarrow \pi^+\pi^-$ 0.8 0.9 $p_{T}^{1}(K^{-}) [GeV/c]^{1.1}$ $\cos\theta^{*}(h^{-})$ $D^{0} \rightarrow K^{-}K$ $D^{0} \rightarrow K^{-}\pi$ $\downarrow D^{0} \rightarrow K^{-} k$ $\downarrow D^{0} \rightarrow K^{-} n$

Measurement of $y_{CP} - y_{CP}^{K_{\pi}}$ using two-body D^0 decays Secondary decays

- Secondary *D*^{*+} mesons coming from *B* decays can survive the selection
- Account their contribution by modifying the fit function:

$$R^{f}(t) = (1 - f_{sec}(t))R^{f}_{prompt}(t) + f_{sec}(t)R^{f}_{sec}(t), \qquad R^{f}_{sec}(t) \propto e^{-(y^{t}_{CP} - y^{K\pi}_{CP})\langle t_{D}(t)
angle / au_{D^{0}}}$$

with $f_{sec}(t)$ and $\langle t_D(t) \rangle$ obtained from simulation

	y_{CP}^{CC}	$y_{CP}^{KK} - y_{CP}^{K\pi}$	$y_{CP}^{KK} - y_{CP}^{K\pi}$
Raw	$0.68 \pm 0.47 (7.9)$	$7.48 \pm 0.48 (5.5)$	$6.64 \pm 0.27 (6.6)$
Matching	$-0.28\pm0.52~(8.3)$	$6.80\pm 0.52~(2.9)$	$7.14 \pm 0.29 \ (5.5)$
Matching + Weighting	$-0.43\pm0.52~(9.0)$	$6.44 \pm 0.52 \ (2.8)$	$6.94 \pm 0.29 \ (5.9)$
Matching + Weighting + Fit with secondaries	$-0.44\pm0.53~(9.0)$	$6.57\pm0.53~(2.8)$	$7.08\pm0.30\ (5.9)$

Measurement of $y_{CP} - y_{CP}^{K_{\pi}}$ using two-body D^0 decays

Cross-checks and systematic uncertainties

· Systematic uncertainties under control

	$\sigma(y_{CP}^{\pi\pi} - y_{CP}^{K\pi})$	$\sigma(y_{CP}^{KK} - y_{CP}^{K\pi})$
	$[10^{-3}]$	$[10^{-3}]$
Combinatorial background	0.12	0.07
Peaking background	0.02	0.11
Treatment of secondary decays	0.03	0.03
Kinematic weighting procedure	0.08	0.02
Input D^0 lifetime	0.03	0.03
Residual nuisance asymmetries	0.03	< 0.01
Fit bias	0.03	0.03
Total	0.16	0.14

Repeated measurement separating by year and magnet polarity

CP asymmetry measurement with $D^0 \to K^+ K^-$ decays $_{D^+}$ and $C_{_{D^+}}$ corrections

•
$$C_{D^+}$$
 decays: $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+, D^+ \rightarrow K^-\pi^+\pi^+, D^+ \rightarrow \overline{K}^0\pi^+$

•
$$C_{D_s^+}$$
 decays: $D^{*+} \to D^0(\to K^-\pi^+)\pi^+$, $D_s^+ \to \phi(\to K^-K^+)\pi^+$, $D_s^+ \to \overline{K}^0K^+$

• The corresponding asymmetries are

$$\begin{aligned} \mathsf{A}(\mathsf{K}^{-}\pi^{+}) &\approx \mathsf{A}_{prod}(\mathsf{D}^{*+}) - \mathsf{A}_{det}(\mathsf{K}^{+}) + \mathsf{A}_{det}(\pi^{+}) + \mathsf{A}_{det}(\pi^{+}_{tag}) \\ \mathsf{A}(\mathsf{K}^{-}\pi^{+}\pi^{+}) &\approx \mathsf{A}_{prod}(\mathsf{D}^{+}) - \mathsf{A}_{det}(\mathsf{K}^{+}) + \mathsf{A}_{det}(\pi^{+}) + \mathsf{A}_{det}(\pi^{+}) \\ \mathsf{A}(\overline{\mathsf{K}}^{0}\pi^{+}) &\approx \mathsf{A}_{prod}(\mathsf{D}^{+}) - \mathsf{A}(\mathsf{K}^{0}) + \mathsf{A}_{det}(\pi^{+}) \\ \mathsf{A}(\phi\pi^{+}) &\approx \mathsf{A}_{prod}(\mathsf{D}^{+}_{s}) + \mathsf{A}_{det}(\pi^{+}) \\ \mathsf{A}(\overline{\mathsf{K}}^{0}\mathsf{K}^{+}) &\approx \mathsf{A}_{prod}(\mathsf{D}^{+}_{s}) - \mathsf{A}(\mathsf{K}^{0}) + \mathsf{A}_{det}(\mathsf{K}^{+}) \end{aligned}$$

You can then combine them to obtain

$$C_{D^{+}}: A_{CP}(K^{+}K^{-}) = A(K^{+}K^{-}) - A(K^{-}\pi^{+}) + A(K^{-}\pi^{+}\pi^{+}) - A(\overline{K}^{0}\pi^{+}) - A(K^{0})$$
$$C_{D_{s}^{+}}: A_{CP}(K^{+}K^{-}) = A(K^{+}K^{-}) - A(K^{-}\pi^{+}) + A(\phi\pi^{+}) - A(\overline{K}^{0}\pi^{+}) - A(K^{0})$$

• $A(K^0) \implies CPV + mixing + different interaction of <math>K^0 - \overline{K}^0$ with the detector material

[Phys. Lett. B767 (2017)]

• 5	Signal	yields	for all	decay	modes	considered
-----	--------	--------	---------	-------	-------	------------

Decay mode	Signal y	Signal yield $[10^6]$		ion factor
	CDP	CDS	CDP	CDS
$D^0 \rightarrow K^- K^+$	45	40	0.75	0.75
$D^0 \rightarrow K^- \pi^+$	60	55	0.35	0.75
$D^+ \to K^- \pi^+ \pi^+$	192	_	0.25	_
$D_s^+ \rightarrow \phi \pi^+$	-	83	_	0.55
$D^+ \rightarrow \overline{K}{}^0 \pi^+$	8	_	0.25	
$D_s^+ \to \overline{K}{}^0 K^+$	_	6	_	0.40

Systematic uncertainties

Source	$\begin{array}{c} \text{CDP} \\ [10^{-4}] \end{array}$	$CDS \\ [10^{-4}]$	Correlation
Secondary decays	0.6	0.3	-
Peaking backgrounds	0.3	0.4	0.74
Fit model	1.1	1.0	0.05
Kinematic weighting	0.8	0.4	-
Neutral kaon asymmetry	0.6	1.3	1.00
Charged kaon asymmetry	-	1.0	-
Total	1.6	2.0	0.28

CP asymmetry measurement with $D^0 \rightarrow K^+ K^-$ decays

Consistency checks

Systematic uncertainties

Source of uncertainty	$K^{\pm}\pi^{+}\pi^{-}$	$K^{\pm}K^{+}K^{-}$	$\pi^{\pm}\pi^{+}\pi^{-}$	$\pi^{\pm}K^{+}K^{-}$
Signal model	0.0004	0.0007	0.0000	0.0001
Peaking background fraction	0.0005	0.0010	0.0002	0.0004
Peaking background asymmetry	0.0022	0.0001	0.0005	0.0007
Combinatorial model	0.0002	0.0005	0.0015	0.0025
Efficiency correction	0.0014	0.0016	0.0018	0.0019
Production asymmetry	0.0011	0.0011	0.0011	0.0011
Total	0.0029	0.0024	0.0027	0.0035

- · Peak. back. fracs.: Vary the fractions within errors
- Peak. back. asymm.: Fixed to 0 in fits, free to float with value obtained in previous measurement within errors to estimate uncertainty
- Eff. corr.: Due to limited size of simulated sample used for evaluation

		B± ====================================	
Region 1	$1 < m^2(\pi^+\pi^-)_{low} < 2.25$	$D \rightarrow \pi \pi \pi$ and	$3.5 < m^2(\pi^+\pi^-)_{high} < 16$
Region 2	$1 < m^2(\pi^+\pi^-)_{low} < 2.25$	and	$16 < m^2(\pi^+\pi^-)_{high} < 23$
Region 3	$4 < m^2(\pi^+\pi^-)_{low} < 15$	and	$4 < m^2(\pi^+\pi^-)_{high} < 16$
		$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$3.5 < m^2(K^+\pi^-) < 19.5$
Region 2	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$19.5 < m^2(K^+\pi^-) < 25.5$
		$B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$	
Region 1	$1 < m^2(K^+K^-) < 2.25$	and	$4 < m^2(K^+\pi^-) < 19$
Region 2	$4 < m^2(K^+K^-) < 25$	and	$3 < m^2(K^+\pi^-) < 16$
		$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	
Region 1	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$4 < m^2 (K^+ K^-)_{high} < 17$
Region 2	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$17 < m^2 (K^+ K^-)_{high} < 23$

• $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ Dalitz plane regions 1&2

• $B^{\pm}
ightarrow K^{\pm} \pi^+ \pi^-$ Dalitz plane regions 1&2

		$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$3.5 < m^2(\pi^+\pi^-)_{high} < 16$
Region 2	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$16 < m^2(\pi^+\pi^-)_{high} < 23$
Region 3	$4 < m^2(\pi^+\pi^-)_{low} < 15$	and	$4 < m^2(\pi^+\pi^-)_{high} < 16$
		$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$3.5 < m^2(K^+\pi^-) < 19.5$
Region 2	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$19.5 < m^2(K^+\pi^-) < 25.5$
-		$B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$	
Region 1	$1 < m^2(K^+K^-) < 2.25$	and	$4 < m^2(K^+\pi^-) < 19$
Region 2	$4 < m^2(K^+K^-) < 25$	and	$3 < m^2(K^+\pi^-) < 16$
		$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	
Region 1	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$4 < m^2 (K^+ K^-)_{high} < 17$
Region 2	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$17 < m^2 (K^+ K^-)_{high} < 23$

• $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ Dalitz plane region 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} & 3.5 < m^{2}(\pi^{+}\pi^{-})_{\rm high} < 16 \\ 25 & {\rm and} & 16 < m^{2}(\pi^{+}\pi^{-})_{\rm high} < 23 \\ {\rm and} & 16 < m^{2}(\pi^{+}\pi^{-})_{\rm high} < 23 \\ {\rm and} & 4 < m^{2}(\pi^{+}\pi^{-})_{\rm high} < 16 \\ B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-} & {\rm and} & 19.5 < m^{2}(K^{+}\pi^{-}) < 19.5 \\ B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-} & {\rm and} & 4 < m^{2}(K^{+}\pi^{-}) < 19.5 \\ {\rm and} & 3 < m^{2}(K^{+}\pi^{-}) < 16 \\ B^{\pm} \rightarrow K^{\pm}K^{+}K^{-} & {\rm and} & 4 < m^{2}(K^{+}\pi^{-})_{\rm high} < 17 \\ 25 & {\rm and} & 17 < m^{2}(K^{+}K^{-})_{\rm high} < 12 \\ \end{array}$	400 350 150 100 100 100 100 100 100 100 100 1	LHCb 5.9 fb ⁻¹	
	(*) 1.8 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	$\begin{array}{c} -4 & 6 \\ \hline \\ \text{ACb} \\ \text{On } b^{-1} \\ \text{on } 1 \\ \hline \\ \text{on } 1 \\ \hline \\ \text{on } 2 \\ \hline \\ \text{on } 3 \\ \hline \\ \text{on } 4 \\ \hline \\ \text{on } 3 \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	8 10 12 $K^*K^-\pi^{\pm}$ natorial k^+body $K^*\pi\pi^-$ $K^*K^*K^-$	14 16 18 $m^2(K^+\pi^-)$ [GeV ² / c^4]

0.4 0.2 0

5.2

5.4

 $m(\pi^{-}K^{+}K^{-})$ [GeV/c²]

5.6

5.2

5.4

 $m(\pi^+ K^- K^+)$ [GeV/c²]

5.6

• $B^{\pm}
ightarrow \pi^{\pm} K^{+} K^{-}$ Dalitz plane region 2

		D± , _±_+	
		$D \rightarrow \pi \pi \pi$	
Region 1	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$3.5 < m^2 (\pi^+ \pi^-)_{high} < 16$
Region 2	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$16 < m^2(\pi^+\pi^-)_{high} < 23$
Region 3	$4 < m^2(\pi^+\pi^-)_{low} < 15$	and	$4 < m^2(\pi^+\pi^-)_{high} < 16$
-		$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$3.5 < m^2(K^+\pi^-) < 19.5$
Region 2	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$19.5 < m^2(K^+\pi^-) < 25.5$
		$B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$	
Region 1	$1 \le m^2(K^+K^-) \le 2.25$	and	$4 \le m^2(K^+\pi^-) \le 19$
Region 2	$4 < m^2(K^+K^-) < 25$	and	$3 < m^2(K^+\pi^-) < 16$
		$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	
Region 1	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$4 < m^2 (K^+ K^-)_{high} < 17$
Region 2	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$17 < m^2 (K^+ K^-)_{high} < 23$

• $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Dalitz plane regions 1&2

		$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$3.5 < m^2(\pi^+\pi^-)_{high} < 16$
Region 2	$1 < m^2 (\pi^+ \pi^-)_{low} < 2.25$	and	$16 < m^2(\pi^+\pi^-)_{high} < 23$
Region 3	$4 < m^2(\pi^+\pi^-)_{low} < 15$	and	$4 < m^2(\pi^+\pi^-)_{high} < 16$
		$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$	
Region 1	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$3.5 < m^2(K^+\pi^-) < 19.5$
Region 2	$1 < m^2(\pi^+\pi^-) < 2.25$	and	$19.5 < m^2(K^+\pi^-) < 25.5$
		$B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$	
Region 1	$1 < m^2(K^+K^-) < 2.25$	and	$4 < m^2(K^+\pi^-) < 19$
Region 2	$4 < m^2(K^+K^-) < 25$	and	$3 < m^2(K^+\pi^-) < 16$
		$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	
Region 1	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$4 < m^2 (K^+ K^-)_{high} < 17$
Region 2	$1.1 < m^2 (K^+ K^-)_{low} < 2.25$	and	$17 < m^2(K^+K^-)_{high} < 23$

Dalitz regions results

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$	N_{sig}	$A_{\rm raw}$	A_{CP}	_
Region 1	14330 ± 150	$+0.309 \pm 0.009$	$+0.303 \pm 0.009 \pm 0.004 \pm 0.003$	29.4σ
Region 2	4850 ± 130	-0.287 ± 0.017	$-0.284 \pm 0.017 \pm 0.007 \pm 0.003$	15.2σ
Region 3	2270 ± 60	$+0.747 \pm 0.027$	$+0.745 \pm 0.027 \pm 0.018 \pm 0.003$	22.9 σ
$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$				-
Region 1	41980 ± 280	$+0.201 \pm 0.005$	$+0.217 \pm 0.005 \pm 0.005 \pm 0.003$	28.3σ
Region 2	27040 ± 250	-0.149 ± 0.007	$-0.145 \pm 0.007 \pm 0.006 \pm 0.003$	15.0 <i>σ</i>
$B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$				_
Region 1	11430 ± 170	-0.363 ± 0.010	$-0.358 \pm 0.010 \pm 0.014 \pm 0.003$	20.5σ
Region 2	2600 ± 120	$+0.075\pm0.031$	$+0.097 \pm 0.031 \pm 0.005 \pm 0.003$	3.1σ
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$				_
Region 1	76020 ± 350	-0.189 ± 0.004	$-0.178 \pm 0.004 \pm 0.004 \pm 0.003$	27.8 σ
Region 2	37440 ± 320	$+0.030\pm0.005$	$+0.043 \pm 0.005 \pm 0.004 \pm 0.003$	6 .1 <i>σ</i>

• $B^{\pm} \rightarrow \rho (770)^0 \pi^{\pm}$ polynomial fit

• $B^{\pm} \rightarrow K^* (892)^0 K^{\pm}$ polynomial fit

• $B^{\pm} \rightarrow K^* (892)^0 \pi^{\pm}$ polynomial fit

• $B^{\pm} \rightarrow \phi(1020) K^{\pm}$ polynomial fit

Search for *CP* violation using \hat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ decays

Phase-space regions definition

						Region	$m_{p\bar{p}}(MeV/c^2)$	$m_{K^{+}\pi^{-}}(MeV/c^{2})$	$\cos \theta_{p\bar{p}}$	$\cos \theta_{K^+\pi^-}$	ϕ
						0	(1800, 2850)	(500, 892)	(-1, 0)	(-1, 0)	$(0, \pi/2)$
						1	(1800, 2850)	(500, 892)	(-1, 0)	(-1, 0)	$(\pi/2, \pi)$
Devilen	$(\mathbf{M}, \mathbf{W}/2)$	$(\mathbf{M},\mathbf{W}/2)$	0	0	4	2	(1800, 2850)	(500, 892)	(-1, 0)	(0, 1)	$(0, \pi/2)$
Region	$m_{p\bar{p}}(\text{Mev}/c^{-})$	$m_{K^+\pi^-}(\operatorname{Mev}/c^-)$	$\cos \theta_{p\bar{p}}$	$\cos \theta_{K^+\pi^-}$	φ	3	(1800, 2850)	(500, 892)	(-1, 0)	(0, 1)	$(\pi/2, \pi)$
0	(1800, 2850)	(500, 1200)	(-1, 0)	(-1, 0)	$(0, \pi/2)$	4	(1800, 2850)	(500, 892)	(0, 1)	(-1, 0)	$(0, \pi/2)$
1	(1800, 2850)	(500, 1200)	(-1, 0)	(-1, 0)	$(\pi/2, \pi)$	0	(1800, 2850)	(500, 892)	(0, 1)	(-1, 0)	$(\pi/2, \pi)$ (0 - (0)
2	(1800 2850)	(500 1200)	(-1)	(0,1)	$(0 \pi/2)$	7	(1800, 2850)	(500, 892)	(0, 1)	(0, 1) (0, 1)	$(0, \pi/2)$ $(\pi/2, \pi)$
2	(1800, 2000)	(500, 1200)	(1, 0)	(0, 1)	$(0, \pi/2)$ $(\pi/2, \pi)$	8	(1800, 2850) (1800, 2850)	(892, 1200)	(0, 1) (-1, 0)	(0, 1) (-1, 0)	(n/2, n) $(0, \pi/2)$
3	(1800, 2850)	(500, 1200)	(-1, 0)	(0, 1)	$(\pi/2,\pi)$	9	(1800, 2850)	(892, 1200)	(-1, 0)	(-1, 0)	$(\pi/2, \pi)$
4	(1800, 2850)	(500, 1200)	(0, 1)	(-1, 0)	$(0, \pi/2)$	10	(1800, 2850)	(892, 1200)	(-1, 0)	(0, 1)	$(0, \pi/2)$
5	(1800, 2850)	(500, 1200)	(0, 1)	(-1, 0)	$(\pi/2, \pi)$	11	(1800, 2850)	(892, 1200)	(-1, 0)	(0, 1)	$(\pi/2, \pi)$
6	(1800, 2850)	(500, 1200)	(0, 1)	(0, 1)	$(0, \pi/2)$	12	(1800, 2850)	(892, 1200)	(0, 1)	(-1, 0)	$(0, \pi/2)$
7	(1800, 2850)	(500, 1200)	(0,1)	(0, 1)	$(\pi/2,\pi)$	13	(1800, 2850)	(892, 1200)	(0, 1)	(-1, 0)	$(\pi/2, \pi)$
	(1000, 2050)	(1000, 1200)	(0, 1)	(0, 1)	(n/2, n)	14	(1800, 2850)	(892, 1200)	(0, 1)	(0, 1)	$(0, \pi/2)$
8	(1800, 2850)	(1200, 2200)	(-1, 0)	(-1, 0)	$(0, \pi/2)$	15	(1800, 2850)	(892, 1200)	(0, 1)	(0, 1)	$(\pi/2, \pi)$
9	(1800, 2850)	(1200, 2200)	(-1, 0)	(-1, 0)	$(\pi/2, \pi)$	16	(1800, 2850)	(1200, 1430)	(-1, 0)	(-1, 0)	$(0, \pi/2)$
10	(1800, 2850)	(1200, 2200)	(-1, 0)	(0, 1)	$(0, \pi/2)$	17	(1800, 2850)	(1200, 1430) (1200, 1420)	(-1, 0)	(-1, 0) (0, 1)	$(\pi/2, \pi)$ (0, $\pi/2$)
11	(1800 2850)	(1200 2200)	(-1, 0)	(0, 1)	$(\pi/2,\pi)$	10	(1800, 2850)	(1200, 1430)	(-1, 0)	(0, 1)	$(0, \pi/2)$ $(\pi/2, \pi)$
19	(1800, 2850)	(1200, 2200)	(0, 1)	((3, 2))	$(0, \pi/2)$	20	(1800, 2850)	(1200, 1430)	(0, 1)	(-1, 0)	(n/2, n) $(0, \pi/2)$
12	(1000, 2050)	(1200, 2200)	(0, 1)	(-1, 0)	$(0, \pi/2)$	21	(1800, 2850)	(1200, 1430)	(0, 1) (0, 1)	(-1, 0)	$(\pi/2,\pi)$
13	(1800, 2850)	(1200, 2200)	(0, 1)	(-1, 0)	$(\pi/2, \pi)$	22	(1800, 2850)	(1200, 1430)	(0, 1)	(0, 1)	$(0, \pi/2)$
14	(1800, 2850)	(1200, 2200)	(0, 1)	(0, 1)	$(0, \pi/2)$	23	(1800, 2850)	(1200, 1430)	(0, 1)	(0, 1)	$(\pi/2, \pi)$
15	(1800, 2850)	(1200, 2200)	(0, 1)	(0, 1)	$(\pi/2, \pi)$	24	(1800, 2850)	(1430, 2200)	(-1, 0)	(-1, 0)	$(0, \pi/2)$
16	(1800 2850)	(2200, 3600)	(-1, 0)	(-1, 0)	$(0 \pi/2)$	25	(1800, 2850)	(1430, 2200)	(-1, 0)	(-1, 0)	$(\pi/2, \pi)$
17	(1800, 2850)	(2200, 2600)	(1, 0)	(1, 0)	$(\sigma, n/2)$	26	(1800, 2850)	(1430, 2200)	(-1, 0)	(0, 1)	$(0, \pi/2)$
17	(1800, 2850)	(2200, 3000)	(-1, 0)	(-1, 0)	(n/2, n)	27	(1800, 2850)	(1430, 2200)	(-1, 0)	(0, 1)	$(\pi/2, \pi)$
18	(1800, 2850)	(2200, 3600)	(-1, 0)	(0, 1)	$(0, \pi/2)$	28	(1800, 2850)	(1430, 2200)	(0, 1)	(-1, 0)	$(0, \pi/2)$
19	(1800, 2850)	(2200, 3600)	(-1, 0)	(0, 1)	$(\pi/2, \pi)$	29	(1800, 2850) (1800, 2850)	(1430, 2200) (1430, 2200)	(0, 1) (0, 1)	(-1, 0) (0, 1)	$(\pi/2, \pi)$ $(0, \pi/2)$
20	(1800, 2850)	(2200, 3600)	(0, 1)	(-1, 0)	$(0, \pi/2)$	31	(1800, 2850)	(1430, 2200)	(0, 1)	(0, 1)	$(0, \pi/2)$ $(\pi/2, \pi)$
21	(1800, 2850)	(2200, 3600)	(0,1)	(-1, 0)	$(\pi/2 \pi)$	32	(1800, 2850)	(2200, 3600)	(-1, 0)	(-1, 0)	$(0, \pi/2)$
21	(1000, 2000)	(2200, 2000)	(0, 1)	(0, 1)	(n/2, n)	33	(1800, 2850)	(2200, 3600)	(-1, 0)	(-1, 0)	$(\pi/2,\pi)$
22	(1800, 2850)	(2200, 3000)	(0, 1)	(0, 1)	$(0, \pi/2)$	34	(1800, 2850)	(2200, 3600)	(-1, 0)	(0, 1)	$(0, \pi/2)$
23	(1800, 2850)	(2200, 3600)	(0, 1)	(0, 1)	$(\pi/2,\pi)$	35	(1800, 2850)	(2200, 3600)	(-1, 0)	(0, 1)	$(\pi/2, \pi)$
						36	(1800, 2850)	(2200, 3600)	(0, 1)	(-1, 0)	$(0, \pi/2)$
						37	(1800, 2850)	(2200, 3600)	(0, 1)	(-1, 0)	$(\pi/2, \pi)$
						38	(1800, 2850)	(2200, 3600)	(0, 1)	(0, 1)	$(0, \pi/2)$
						39	(1800, 2850)	(2200, 3600)	(0, 1)	(0, 1)	$(\pi/2, \pi)$

Search for *CP* violation using \widehat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ decays

Kinematic distributions for binnings

- Black lines: 24 bin edges
- Red + black lines: 40 bin edges

Search for *CP* violation using \hat{T} -odd correlations in $B^0 \to p\overline{p}K^+\pi^-$ decays

Phase-space regions results

Region	$A_{\hat{T}}(\%)$	$\bar{A}_{\hat{T}}(\%)$	$a_{CP}^{\hat{T}\text{-odd}}(\%)$	$a_P^{\hat{T}\text{-odd}}(\%)$
0	-26.7 ± 17.8	-21.9 ± 12.9	-2.4 ± 11.0	-24.3 ± 11.0
1	5.4 ± 15.8	-1.6 ± 20.7	3.5 ± 13.0	1.9 ± 13.0
2	-7.3 ± 11.1	18.9 ± 17.4	-13.1 ± 10.3	5.8 ± 10.3
3	15.4 ± 12.8	5.0 ± 13.7	5.2 ± 9.4	10.2 ± 9.4
4	-21.9 ± 13.9	26.1 ± 16.3	-24.0 ± 10.7	2.1 ± 10.7
5	-13.4 ± 13.9	21.9 ± 22.3	-17.6 ± 13.1	4.2 ± 13.1
6	-19.3 ± 10.4	-15.3 ± 11.4	-2.0 ± 7.7	-17.3 ± 7.7
7	0.7 ± 10.9	2.8 ± 8.4	-1.1 ± 6.9	1.8 ± 6.9
8	-5.1 ± 12.8	-8.0 ± 13.2	1.5 ± 9.2	-6.5 ± 9.2
9	6.6 ± 5.8	4.0 ± 5.6	1.3 ± 4.0	5.3 ± 4.0
10	0.7 ± 9.0	30.2 ± 12.2	-14.8 ± 7.6	15.4 ± 7.6
11	30.9 ± 8.7	0.2 ± 9.4	15.3 ± 6.4	15.6 ± 6.4
12	38.4 ± 16.8	22.7 ± 10.7	7.9 ± 10.0	$30.58 \pm 9.96 - 3.1\sigma$ (K ⁻⁰)
13	11.6 ± 10.2	14.2 ± 8.8	-1.3 ± 6.7	12.9 ± 6.7
14	-24.1 ± 10.5	6.4 ± 13.2	-15.3 ± 8.4	-8.8 ± 8.4
15	-18.8 ± 8.6	10.2 ± 9.5	-14.5 ± 6.4	-4.3 ± 6.4
16	7.3 ± 11.9	-20.9 ± 15.6	14.1 ± 9.8	-6.8 ± 9.8
17	-2.6 ± 10.4	-1.5 ± 9.0	-0.5 ± 6.9	-2.1 ± 6.9
18	10.5 ± 11.7	24.0 ± 12.6	-6.8 ± 8.6	17.2 ± 8.6
19	1.1 ± 10.9	20.5 ± 9.8	-9.7 ± 7.3	10.8 ± 7.3
20	28.6 ± 32.0	-28.9 ± 21.9	28.7 ± 19.4	-0.1 ± 19.4
21	0.4 ± 19.3	9.1 ± 15.6	-4.4 ± 12.4	4.7 ± 12.4
22	36.2 ± 19.0	-13.9 ± 19.2	25.1 ± 13.4	11.1 ± 13.6
23	-4.3 ± 12.5	-28.1 ± 14.3	11.9 ± 9.5	-16.2 ± 9.5
24	11.4 ± 5.4	9.4 ± 5.1	1.0 ± 3.7	10.4 ± 3.7
25	6.1 ± 4.2	2.2 ± 4.3	1.9 ± 3.0	4.2 ± 3.0
26	-9.7 ± 7.6	-20.8 ± 7.6	5.6 ± 5.4	-15.3 ± 5.4
27	-13.1 ± 5.9	-17.7 ± 5.8	2.3 ± 4.1	$-15.4 \pm 4.1 = 3.75 \sigma (K_2^*)$
28	7.0 ± 9.5	-2.2 ± 10.5	4.6 ± 7.1	2.4±7.1
29	14.6 ± 8.9	13.3 ± 9.6	0.6 ± 6.5	13.9 ± 6.5
30	-6.6 ± 11.4	-21.2 ± 9.7	7.3 ± 7.5	-13.9 ± 7.5
31	-5.3 ± 6.7	-13.0 ± 8.0	3.8 ± 5.2	-9.2 ± 5.2
32	5.5 ± 4.8	15.5 ± 4.8	-5.0 ± 3.4	$10.5 \pm 3.4 - 3.1\sigma$
33	6.1 ± 3.4	5.3 ± 3.4	0.4 ± 2.4	5.7 ± 2.4
34	-11.9 ± 6.7	-9.9 ± 6.5	-1.0 ± 4.7	-10.9 ± 4.7
35	-0.9 ± 5.1	-3.8 ± 5.0	1.4 ± 3.6	-2.3 ± 3.6
36	5.9 ± 6.3	-2.6 ± 7.1	4.2 ± 4.8	1.6 ± 4.8
37	12.4 ± 5.7	10.8 ± 5.9	0.8 ± 4.1	11.6 ± 4.1
38	-4.6 ± 7.1	-0.5 ± 6.8	-2.0 ± 4.9	-2.5 ± 4.9
39	3.3 ± 5.0	0.5 ± 5.3	1.4 ± 3.6	1.9 ± 3.6

Region	$A_{\hat{T}}(\%)$	$\bar{A}_{T}(\%)$	$a_{CP}^{\hat{T}-\text{odd}}(\%)$	$a_P^{\hat{T}-\text{odd}}(\%)$	
0	-16.5 ± 10.1	-13.2 ± 9.5	-1.6 ± 7.0	-14.9 ± 7.0	
1	6.1 ± 9.2	3.2 ± 9.8	1.4 ± 6.7	4.7 ± 6.7	
2	-1.2 ± 7.0	23.9 ± 10.0	-12.5 ± 6.0	11.4 ± 6.0	
3	25.3 ± 7.2	3.2 ± 7.8	11.0 ± 5.3	14.3 ± 5.3	
4	7.8 ± 11.1	24.3 ± 9.0	-8.2 ± 7.1	16.1 ± 7.1	
5	2.9 ± 8.3	14.9 ± 8.6	-6.0 ± 6.0	8.9 ± 5.9	
6	-22.8 ± 7.4	-4.9 ± 8.6	-8.9 ± 5.7	-13.9 ± 5.7	
7	-10.4 ± 6.8	6.8 ± 6.6	-8.6 ± 4.7	-1.8 ± 4.7	
8	10.1 ± 5.0	5.7 ± 4.9	2.2 ± 3.5	7.9 ± 3.5	
9	4.5 ± 4.0	1.7 ± 4.0	1.4 ± 2.8	3.1 ± 2.8	
10	-4.5 ± 6.5	-10.2 ± 6.5	2.9 ± 4.6	-7.4 ± 4.6	
11	-10.1 ± 5.2	-9.5 ± 5.2	-0.3 ± 3.7	-9.8 ± 3.7	
12	9.4 ± 9.2	-7.8 ± 9.5	8.6 ± 6.6	0.8 ± 6.6	
13	12.2 ± 8.2	10.4 ± 8.0	0.9 ± 5.7	11.3 ± 5.7	
14	3.6 ± 9.8	-18.8 ± 8.7	11.2 ± 6.6	-7.6 ± 6.6	
15	-4.9 ± 6.0	-15.7 ± 7.1	5.4 ± 4.7	-10.3 ± 4.7	01-
16	5.5 ± 4.8	15.7 ± 4.7	-5.1 ± 3.4	10.6 ± 3.4	🛶 3.1σ
17	6.2 ± 3.4	5.6 ± 3.3	0.3 ± 2.4	5.9 ± 2.4	
18	-13.6 ± 6.7	-11.2 ± 6.4	-1.2 ± 4.6	-12.4 ± 4.6	
19	-0.9 ± 5.1	-4.3 ± 5.1	1.7 ± 3.6	-2.6 ± 3.6	
20	5.9 ± 6.2	-4.4 ± 6.9	5.2 ± 4.7	0.7 ± 4.7	
21	13.6 ± 5.6	9.9 ± 5.8	1.8 ± 4.0	11.7 ± 4.0	
22	-4.5 ± 6.9	-2.6 ± 6.6	-0.9 ± 4.8	-3.5 ± 4.8	
23	3.1 ± 5.0	0.7 ± 5.2	12 ± 36	19 ± 36	