$B - \bar{B}$ mixing on domain-wall lattices

Felix Erben

in collaboration with Peter Boyle, Luigi Del Debbio, Jonathan Flynn, Andreas Jüttner, Takashi Kaneko, Michael Marshall, Rajnandini Mukherjee, Antonin Portelli, J Tobias Tsang, Oliver Witzel RBC/UKQCD and JLQCD

CIPANP 2022, Orlando

30/08/2022

European Research Council Established by the European Commission

NEUTRAL MESON MIXING

B-mesons B_d , B_s have mass eigenstates

$$egin{aligned} |B_{qL}^0
angle &= p_q|B_q^0
angle + q_q|ar{B}_q^0
angle \ |B_{qH}^0
angle &= p_q|B_q^0
angle - q_q|ar{B}_q^0
angle \end{aligned}$$

with mass m_{qL} and total decay width Γ_{qL} for the lighter eigenstate. Splittings:

$$\Delta m_q = m_{qH} - m_{qL}$$

 $\Delta \Gamma_q = \Gamma_{qL} - \Gamma_{qH}$

Experimentally, time dependent probabilities give access to the splittings, e.g.

W

u, c, t

q

W

 \bar{B}_q^0

$$\mathcal{P}(B_q^0 \to \bar{B}_q^0) = \frac{1}{2} e^{-\Gamma_q t} [\cosh(\frac{1}{2}\Delta\Gamma_q t) - \cos(\Delta m_q t)] |q_q/p_q|^2$$

 B_a^0

NEUTRAL MESON MIXING

Experimental results [HFLAV 2021]

$$\Delta m_s = 17.765(6) p s^{-1}$$

$$\Delta m_d = 0.5065(19) ps^{-1}$$

- $\Delta B = 2$ process
- enhanced by top quark \Rightarrow short-distance dominated
- · OPE shrinks box diagram to local four-quark operator

$$\langle ar{B}^0_q | \mathfrak{H}^{\Delta B=2}_{ ext{eff}} | B^0_q
angle o \langle ar{B}^0_q | \mathfrak{O}_i | B^0_q
angle$$

• 5 parity-even, dimension 6, $\Delta B = 2$ operators O_i

- bag parameters ${\mathcal B}$ give access to mass splittings Δm

$$\begin{split} \mathcal{B}_{B_q}^{[i]} &= \frac{\langle \bar{B}_q^0 | \mathbb{O}_i | B_q \rangle}{\langle \bar{B}_q^0 | \mathbb{O}_i | B_q \rangle_{\text{VSA}}} \\ \Delta m_q &= |V_{td} V_{tq}^*|^2 \mathcal{K} M_{B_q} f_{B_q}^2 \mathcal{B}_{B_q}^{[1]} \end{split}$$

- *V_{tq}* from experiment
- \mathcal{K} known (perturbative)
- + M_{B_q} , f_{B_q} , $\mathcal{B}_{B_q}^{[i]}$ non-perturbatively from lattice QCD

LATTICE QCD

- Discrete, finite Euclidean space-time grid
 - quark fields ψ on sites n
 - gluons U_{μ} as gauge links
 - finite lattice spacing a (UV regulator)
 - finite volume L, T (IR regulator)
- · Path integral

$$\langle \mathfrak{O} \rangle = \frac{1}{Z} \int dU d\psi d\bar{\psi} \, \mathfrak{O}[U, \psi, \bar{\psi}] e^{-S[U, \psi, \bar{\psi}]}$$

- ⇒ exponentially decaying & finite estimators
 - even relatively small grids have size $\Lambda = (L/a) \times (T/a) = 24^3 \times 48$
 - · exact evaluation prohibitively expensive
 - \Rightarrow stochastic sampling of ensembles

LATTICE QCD

Fermionic part of the path integral can be solved explicitly

$$\langle \mathfrak{O} \rangle = \frac{1}{Z} \int dU \, e^{-S_{G}[U]} d\psi d\bar{\psi} \, e^{-S_{F}[U,\psi,\bar{\psi}]} \mathfrak{O}[U,\psi,\bar{\psi}]$$
$$= \frac{1}{Z} \int dU \, e^{-S_{G}[U]} \Big(\prod_{f} \det[D_{f}(U)] \Big) \mathfrak{O}[U,\psi,\bar{\psi}]$$

Monte-Carlo simulation: interpret

$$Z^{-1}e^{-S_G[U]}\Big(\prod_f \det[D_f(U)]\Big)$$

as probability weight.

- D_f is matrix with $12 \times \Lambda$ rows and columns
- \Rightarrow brute-force inversion prohibitively expensive
- \Rightarrow intricate algorithms needed to account for det[D_f], beyond the scope of this talk

LATTICE QCD

- Fermion determinants describe "sea quarks"
 - · quark pairs in fermionic vacuum
 - gives rise to definition of "valence quarks" giving quantum numbers to hadrons
- "quenching": set $det[D_f] = 1$
 - · neglects sea quark contribution
- we use partially quenched setup " $N_f = 2 + 1$ "
 - $det[D_u] = det[D_d] \neq 1$
 - det[D_s] $\neq 1$
- sea-quark masses m_l, m_s are inputs
 - typically $M_{\pi} > M_{\pi}^{\rm phys}$

We need to control on each ensemble

- finite-volume effects $M_{\pi}L \gtrsim 4$
- discretisation effects of heavy quark $am_H \ll 1$
 - · currently too expensive to control simultaneously

We therefore simulate on multiple ensembles, and take the limits

- lattice spacing $a \rightarrow 0$
- box size $L
 ightarrow \infty$
- sea quark masses $m_q o m_q^{
 m phys}$ $(M_\pi o M_\pi^{
 m phys})$
- bottom quark mass $m_b
 ightarrow m_b^{
 m phys}$

- We simulate at multiple heavy-quark masses $m_h \sim m_c \rightarrow m_h \lesssim m_b$
 - \Rightarrow Extrapolation in $m_h \rightarrow m_b$ as part of global fit
 - · systematically improvable
 - · expensive, and analysis of more data
- · all other lattice calculations use effective actions for heavy quarks
 - \Rightarrow no extrapolation needed
 - · systematic bias
 - · not systematically improvable

- · multiple different lattice action discretisations available
- all lattice actions must recover the same physics in the continuum
- we use "Domain-Wall Fermions"
 - automatic O(a) improvement in absence of odd powers in a
 - \Rightarrow reduced discretisation effects
 - · improved chiral symmetry
 - \Rightarrow leads to simple mixing pattern of operators O_i

- three independent lattice groups working on $B_q \overline{B}_q$ mixing
- current tension between Δm_d , Δm_s lattice determinations
 - FNAL/MILC '16 is in tension with experiment
 - HPQCD '19 is compatible with experiment
 - RBC/UKQCD '19 result still missing renormalization factors
 - \Rightarrow we are working on that!

[Di Luzio et al. arxiv 1909.11087]

TWO-POINT FUNCTIONS

- fit to heavy-light / heavy-strange 2pt functions: *M*_{Ba}, *f*_{Ba}
- also need pion/kaon 2pt functions: M_{π} , M_{K}
- shown here: lightest heavy-light meson on "a2.7m230" ensemble

$$C_{2}^{\Gamma_{1}\Gamma_{2}} = \sum_{\boldsymbol{x}} \langle O_{\Gamma_{2}}(\boldsymbol{x},t) O_{\Gamma_{1}}(\boldsymbol{0},t)^{\dagger} \rangle = \sum_{n=0}^{\infty} \frac{M_{\Gamma_{2}n}M_{\Gamma_{1}n}}{2E_{n}} (\boldsymbol{e}^{-E_{n}t} + \boldsymbol{e}^{-E_{n}(T-t)})$$

with $\Gamma_i \in {\gamma_5, \gamma_0 \gamma_5} \equiv {P, A}$

$$\boldsymbol{E}_{\text{eff}}^{\Gamma_{1}\Gamma_{2}}(t) = \ln\left(\boldsymbol{C}_{2}^{\Gamma_{1}\Gamma_{2}}(t)/\boldsymbol{C}_{2}^{\Gamma_{1}\Gamma_{2}}(t+1)\right)$$

THREE-POINT FUNCTIONS

FORMULA

- four-quark operators $O_q^{\Gamma\Gamma} = (\bar{b}_a \Gamma q_a) (\bar{b}_b \Gamma q_b)$
- different values for $B \overline{B}$ separation ΔT
- · large separations noisier
- small separations excited-state dominated

$$\begin{split} \mathcal{C}_{3}^{\mathcal{O}_{q}^{\Gamma\Gamma}}(t,\Delta T) = & \langle \mathcal{P}(\Delta T) \mathcal{O}_{q}^{\Gamma\Gamma} \bar{\mathcal{P}}^{\dagger}(\mathbf{0}) \rangle \\ = & \mathcal{M}_{\mathcal{P}0}^{2} / (4E_{0}^{2}) \langle \mathbf{0} | \mathcal{O}_{q}^{\Gamma\Gamma} | \mathbf{0} \rangle e^{-E_{0}\Delta T} \times \left[1 + \mathcal{C}^{(0|1)} \cosh[\Delta E(t - \Delta T/2)] \right] \end{split}$$

with 5 linear combinations of $\mathcal{O}_{q}^{\Gamma\Gamma}$:

$$[VV + AA], [VV - AA], [SS + PP], [SS - PP], [TT]$$

- We look at ratios with similar time behaviour in denominator and numerator
- \Rightarrow cancellation of correlations

$$R(\Delta T) = \frac{C_3^{\mathcal{O}_q^{\Gamma\Gamma}}(t, \Delta T)}{C_{PA}(t)C_{AP}(\Delta T - t)} \bigg|_{t = \Delta T/2}$$

• Example of combined correlated fit to heaviest heavy-strange meson on "a2.7m230" ensemble

FIT STRATEGY

- We have studied a number of different strategies to fit all these parameters and settled on a **simultaneous**, **fully correlated** fit to: $C_2^{PP}(t), C_2^{PA}(t), C_2^{AA}(t), R^{\circ}(\Delta T)$
- · We define a vector with all data points entering the fit

$$\boldsymbol{C} = (\boldsymbol{C}_{2}^{PP}(t_{\min}^{PP}), \dots, \boldsymbol{C}_{2}^{PA}(t_{\min}^{PA}), \dots, \boldsymbol{C}_{2}^{AA}(t_{\min}^{AA}), \dots, \boldsymbol{R}^{\circlearrowright}(\Delta T_{\min}^{\circlearrowright}), \dots)$$

$$\Delta = \boldsymbol{C}^{\text{data}} - \boldsymbol{C}^{\text{model}}$$

- From this we define and minimise a χ^2 function

$$\chi^2 = \Delta C_{cov}^{-1} \Delta^T$$

CORRELATION MATRIX

- 2pt functions are highly correlated
- ratios are decorrelated from the 2pt functions
- We improved upon an earlier attempt of fitting 2pt and raw 3pt functions simultaneously, which had high correlations

LANDSCAPE PLOT OF OUR ENSEMBLES

- 2 ensembles at m_{π}^{phys}
- JLQCD ensembles are very fine
 - \Rightarrow almost reach $m_b^{\rm phys}$
- 2 very similar ensembles with $m_{\pi}L = 3.0$ and $m_{\pi}L = 4.4$
- 6 different lattice spacings from a = 0.11 fm to a = 0.044 fm
- ⇒ These strongly constrain the relevant limits we will take in a final global fit to data on all ensembles.

RATIO OF DECAY CONSTANTS - JLQCD ENSEMBLES

- RBC/UKQCD ensembles have sea-quark tuned to physical $m_s^{
 m phys}$
- Two JLQCD ensembles come in pairs, bracketing $m_s^{
 m phys}$
- · interpolation slope is then applied to other ensembles
- only mild dependence on m^{sea}

• even milder dependence on m_s^{sea} for bag parameters

RATIO OF DECAY CONSTANTS

- illustration in the heavy-quark mass reach of the JLQCD ensembles
- · dependence on heavy-quark mass is very mild

RATIO OF BAG PARAMETERS - VV + AA

- this SU(3)-breaking ratio is close to 1
- · dependence on heavy-quark mass is very mild

$$\langle O \rangle_{i}^{\mathrm{S}}(\mu) = \lim_{a^{2} \to 0} \sum_{j=1}^{5} [Z_{O}^{\mathrm{S}}(a,\mu)]_{ij} \langle O \rangle_{j}^{\mathrm{bare}}(a)$$

for some regularisation independent scheme S at mass scale $\mu.$ Continuum perturbation theory can then match

$$\langle \textit{O}\rangle_{\textit{i}}^{\overline{\mathrm{MS}}}(\mu) = \textit{R}^{\overline{\mathrm{MS}} \leftarrow \mathrm{S}} \langle \textit{O}\rangle_{\textit{i}}^{\mathrm{S}}(\mu)$$

We use the "RI-SMOM" scheme. Requires computation of four-quark vertices for $(\bar{b}q) \rightarrow (\bar{q}b)$. [Boyle et al. arxiv 1708.03552]

 \Rightarrow analysis of NPR data is underway

Based on chiral symmetry of our domain-wall fermions, a very simple mixing pattern of the 5 operators arises:

$\mathfrak{O}_1 = \mathfrak{O}^{VV+AA}$	(ന.	0	(n \
$\mathfrak{O}_{2}=\mathfrak{O}^{\textit{VV}-\textit{AA}}$		$(0_{2/3} \ 0_{2/3})$		
$\mathfrak{O}_3=\mathfrak{O}^{\textit{SS-PP}}$	0	$\begin{pmatrix} 0_{2/3} & 0_{2/3} \end{pmatrix}$	(J
$\mathfrak{O}_4=\mathfrak{O}^{\textit{SS}+\textit{PP}}$	0	0	$\begin{pmatrix} 0_{4/5} \\ 0_{4/5} \end{pmatrix}$	$\begin{pmatrix} 0_{4/5} \\ 0_{4/5} \end{pmatrix}$
$\mathcal{O}_5 = \mathcal{O}^{TT}$.	Υ.		(04/5	04/5//

This block-structure means that only \mathcal{O}_2 , \mathcal{O}_3 as well as \mathcal{O}_4 , \mathcal{O}_5 mix, but they are linearly independent from each other and from \mathcal{O}_1 .

This is a great advantage of chiral domain wall fermions to other lattice discretisations, where a more complicated mixing pattern has to be dealt with.

[Boyle et al. arxiv 1708.03552]

CONCLUSIONS & OUTLOOK

Conclusions:

- We can extract bag parameters and matrix elements $\langle 0|0|0\rangle$ using a fully correlated fit with a combined χ^2 /dof for C_2 and C_3 .
- DWF leads to a very simple mixing pattern of the 5 operators due to chiral symmetry
- Set of 15 ensembles
 - + 2 ensembles at $m_{\pi}^{
 m phys}$
 - JLQCD ensembles almost reach $m_b^{\rm phys}$
 - 2 very similar ensembles with $m_{\pi}L = 3.0$ and $m_{\pi}L = 4.4$
 - + 6 different lattice spacings from $a=0.044 {
 m fm}$ to $a=0.11 {
 m fm}$
 - ⇒ These strongly constrain the relevant limits we will take in a final global fit to data on all ensembles.

Next steps

- · Non-perturbative renormalisation (NPR) is being worked on
- · Extract bag parameters for full 5-operator basis
 - \Rightarrow will allow us to constrain Δm_d , Δm_s

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.

BACKUP

LATTICE SETUP

- RBC-UKQCD's 2+1 flavour domain wall fermions [Blum et al. arxiv 1411.7017]
 - pion masses from $m_{\pi}=$ 139 MeV to $m_{\pi}=$ 430 MeV
 - several heavy-quark masses from below m_c to $0.5m_b$, using a stout-smeared action ($\rho = 0.1$, N = 3) with $M_5 = 1.0$, $L_s = 12$ and Möbius-scale = 2 [Boyle et al. arXiv:1812.08791]
 - · light and strange quarks: sign function approximated via:
 - · Shamir approximation for heavier pion masses
 - Möbius approximation at $m_\pi^{\rm phys}$ and on the finest ensemble
- JLQCD's 2+1 flavour domain wall fermions [Kaneko et al. arxiv 1711.11235]
 - pion masses from $m_{\pi}=$ 226 MeV to $m_{\pi}=$ 310 MeV
 - heavy-quark masses from *m_c* nearly up to *m_b*, using the same stout-smeared action.
 - · light and strange quarks use the same action as the heavy quarks.

	L/a	T/a	a ⁻¹ [GeV]	<i>m</i> _π [MeV]	$m_{\pi}L$	hits $\times N_{conf}$	collaboration id
a1.7m140	48	96	1.730(4)	139.2	3.9	48 × 90	R/U C0
a1.8m340	24	64	1.785(5)	339.8	4.6	32 imes 100	R/U C1
a1.8m430	24	64	1.785(5)	430.6	5.8	32 imes 101	R/U C2
a2.4m140	64	128	2.359(7)	139.3	3.8	64 × 82	R/U M0
a2.4m300	32	64	2.383(9)	303.6	4.1	32 imes 83	R/U M1
a2.4m360	32	64	2.383(9)	360.7	4.8	32 imes 76	R/U M2
a2.4m410	32	64	2.383(9)	411.8	5.5	32 imes 81	R/U M3
a2.5m230-L	48	96	2.453(4)	225.8	4.4	24 imes 100	J C-ud2-sa-L
a2.5m230-S	32	64	2.453(4)	229.7	3.0	16 imes 100	J C-ud2-sa
a2.5m310-a	32	64	2.453(4)	309.1	4.0	16 imes 100	J C-ud3-sa
a2.5m310-b	32	64	2.453(4)	309.7	4.0	16 imes 100	J C-ud3-sb
a2.7m230	48	96	2.708(10)	232.0	4.1	48 × 72	R/U F1M
a3.6m300-a	48	96	3.610(9)	299.9	3.9	24 imes 50	J M-ud3-sa
a3.6m300-b	48	96	3.610(9)	296.2	3.9	24 imes 50	J M-ud3-sb
a4.5m280	64	128	4.496(9)	284.3	4.0	32 imes 50	J F-ud3-sa

List of ensembles used in this work. For consistency of naming conventions in our set of ensembles from two collaborations, we introduce a shorthand notation in the first column which is used throughout this work. The last column shows names used by RBC/UKQCD ("R/U") and JLQCD ("J").