Neutrino-nucleon quasielastic scattering from lattice QCD

- Yin Lin 林胤 <u>yin01@mit.edu</u> MIT
- Aug 31, 2022 **CIPANP 2022**

Long-baseline neutrino experiments

<u>yinO1@mit.edu</u> Yin Lin 林胤

Neutrino-nucleus cross section

Neutrino-nucleus cross section

<u>yin01@mit.edu</u> Yin Lin 林胤

Charged-current neutrino-nucleon cross section

Charged-current neutrino-nucleon cross section

Vector FFs: High statistics measurements from escattering

Charged-current neutrino-nucleon cross section

Vector FFs: High statistics measurements from escattering

Axial FF: Lacking new data, dominant uncertainty

Intro to lattice QCD

<u>yin01@mit.edu</u> **Yin Lin** 林胤

Use Markov chain Monte Carlo (MCMC) method to compute integrals

How to compute with lattice QCD

How to compute with lattice QCD

$C_{3pt}(t,\tau) = \langle O_N(t)J(\tau)O_N(0) \rangle$

• Mass $C_{2pt}(t) \to Ae^{-m_N t}$

Matrix element

<u>yin01@mit.edu</u> **Yin Lin** 林胤

Signal-to-noise problems in practice

Signal-to-noise problems in practice

<u>yin01@mit.edu</u> **Yin Lin** 林胤

Signal-to-noise problems in practice

$$continuum \Delta E$$

$$p_n = (0, 0, 0)$$

$$p_n = (1, 0, 0)$$

$$p_n = (2, 0, 0)$$

$$p_n = (3, 0, 0)$$

$$aM_{eff} \equiv \ln(C_{2pt}(t)/C_{2pt}(t + \Delta m_N))$$

Nucleon form factors

Proton magnetic form factor

Isovector nucleon axial form factor

Isovector nucleon axial form factor on lattices

Neutrino-neutron cross section

Neutrino-neutron cross section

Шiī Massachusetts Institute of Technology

Neutrino-neutron cross section

- Lattice QCD results on the nucleon axial form factors are converging \rightarrow higher values at large Q²
- Fully controlled systematics in the near future (new experiments?)
- Exploratory calculations of other processes (resonance transition form factors, hadronic tensors, and pdfs)

Also see Michael Wagman's plenary talk tomorrow for more!

$C_{2pt} \equiv \langle X \rangle = \langle O_N(t) \overline{O}_N(0) \rangle \to A e^{-m_N t}$

$C_{2pt} \equiv \langle X \rangle = \langle O_N(t) \overline{O}_N(0) \rangle \to A e^{-m_N t}$

$Var(X) = \langle X^2 \rangle - \langle X \rangle^2$

$C_{2pt} \equiv \langle X \rangle = \langle O_N(t) \overline{O}_N(0) \rangle \to A e^{-m_N t}$

$Var(X) = \langle X^2 \rangle - \langle X \rangle^2$

Parisi-Lepage argument

<u>yin01@mit.edu</u> **Yin Lin** 林胤

$C_{2pt} \equiv \langle X \rangle = \langle O_N(t) \overline{O}_N(0) \rangle \to A e^{-m_N t}$

$Var(X) = \langle X^2 \rangle - \langle X \rangle^2$

Parisi-Lepage argument

$SNR \equiv \frac{\langle X \rangle}{\sqrt{Var(X)}/\sqrt{N}} \to C\sqrt{N}e^{-(m_N - (3/2)m_\pi)t}$ (--)

Neutrino-argon cross sections at DUNE

Nucleon axial charge

[USQCD white paper, arXiv:1904.09931]

Proton magnetic form factor

Berlin Wall plot

Шïт Massachusetts Institute of Technology

