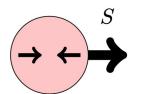
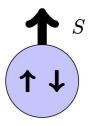

Progress in the exploration of nucleon's spin structures

Nobuo Sato

CIPANP Aug 31 2022



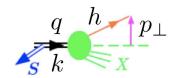
Collinear Spin structures


$$f = f_{\rightarrow} + f_{\leftarrow}$$

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0)|N\rangle$$

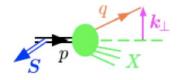
$$\Delta f = f_{\rightarrow} - f_{\leftarrow}$$
 Helicity distribution

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_5\psi_i(0)|N\rangle$$


$$\delta_{\mathrm{T}}f=f_{\uparrow}-f_{\downarrow}$$
 Transversity

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_\perp\gamma_5\psi_i(0)|N\rangle$$

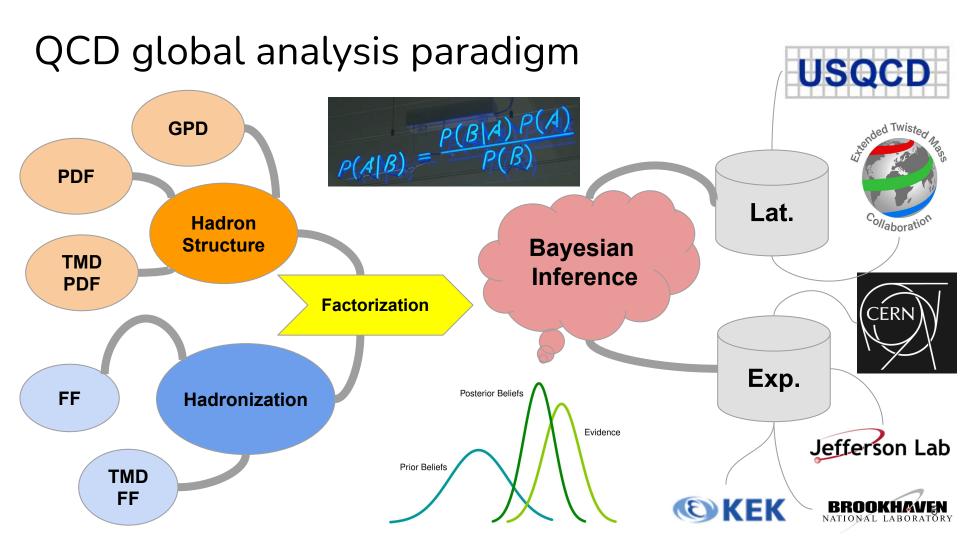
TMD Spin structures


Sivers '89

$$f_{q/h\uparrow}(x,\vec{k}_{\perp},\vec{S}) = f_{q/h}(x,k_{\perp}^2) - \frac{1}{M} f_{1T}^{\perp q}(x,k_{\perp}^2) \vec{S} \cdot (\hat{P} \times \vec{k}_{\perp})$$

Collins '92

$$D_{q/h}(z, \vec{p}_{\perp}, \vec{s}_{q}) = D_{q/h}(z, p_{\perp}^{2}) + \frac{1}{zM_{h}} H_{1}^{\perp q}(z, p_{\perp}^{2}) \vec{s}_{q} \cdot (\hat{k} \times \vec{p}_{\perp})$$



\bigcirc	►= Nucleon Spin	Nucleon Polarization			
\odot	= Quark Spin	Unpolarized	Longitudinal	Transverse	
Quark Polarization	Unpolarized	f_1 • Number Density		$f_{1T}^{\perp} \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Sivers}}$	
	Longitudinal		$g_1 \longrightarrow - \bigoplus$ Helicity	$g_{1T}^{\perp} \stackrel{\uparrow}{\bigodot} - \stackrel{\uparrow}{\bigodot}$ Worm-Gear T	
	Transverse	h_1^{\perp} \bullet \bullet Boer-Mulders	h_{1L}^{\perp} \longrightarrow — \longrightarrow Worm-Gear L	h_1 Transversity h_{1T}^{\perp} Pretzelosity	

How do we measure these structures?

 We cannot measure them but we can infer them from data

- Key elements for inference
 - Factorization/evolution
 - Input scale modeling
 - Likelihood function
 - Test of universality

Recent spin pheno studies

with TMD evolution

Global analysis of the Sivers functions at NLO+NNLL in QCD

Published in: JHEP 01 (2021) 126 • e-Print: 2009.10710 [hep-ph]

Origin of single transverse-spin asymmetries in high-energy collisions

Published in: Phys.Rev.D 102 (2020) 5, 054002 • e-Print: 2002.08384 [hep-ph]

2020)

The 3-dimensional distribution of quarks in momentum space

Published in: Phys.Lett.B 827 (2022) 136961 • e-Print: 2004.14278 [hep-ph]

et al. (Feb 19, 2020)

Cagliari), Marco Radici (INFN, Pavia) (Apr 29, 2020)

Vladimirov (Regensburg U.) (Mar 4, 2021)

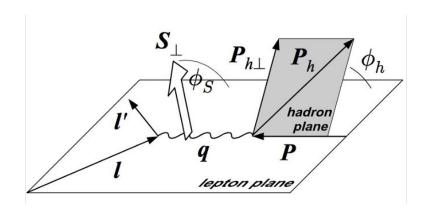
Updated QCD global analysis of single transverse-spin asymmetries: Extracting H~, and the role of the Soffer bound and lattice QCD Jefferson Lab Angular Momentum (JAM) and Jefferson Lab Angular Momentum Collaborations • Leonard Gamberg (Penn State U., Berks-Lehigh Valley) et al. (May 2, 2022) Published in: Phys.Rev.D 106 (2022) 3, 034014 • e-Print: 2205.00999 [hep-ph] First global QCD analysis of the TMD g1T from semi-inclusive DIS data Shohini Bhattacharya (Brookhaven and Temple U.), Zhong-Bo Kang (UCLA and Stony Brook U.), Andreas Metz (Temple U.), Gregory Penn (Temple U. and Yale U.), Daniel Pitonyak (Lebanon Valley Coll.) (Oct 19, 2021) Published in: Phys.Rev.D 105 (2022) 3, 034007 • e-Print: 2110.10253 [hep-ph] Extraction of the Sivers function from SIDIS. Drell-Yan, and W^{\pm}/Z boson production data Marcin Bury (Regensburg U.), Alexei Prokudin (Penn State U., Berks-Lehigh Valley and Jefferson Lab), Alexey Published in: JHEP 05 (2021) 151 • e-Print: 2103.03270 [hep-ph] #18 Miguel G. Echevarria (Alcala de Henares U.), Zhong-Bo Kang (UCLA and Stony Brook U.), John Terry (UCLA) (Sep 22. Jefferson Lab Angular Momentum Collaboration • Justin Cammarota (Coll. William and Mary and Lebanon Valley Coll.) Alessandro Bacchetta (Pavia U. and INFN, Pavia), Filippo Delcarro (Jefferson Lab), Cristian Pisano (Cagliari U. and INFN,

Origin of single transverse-spin asymmetries in high-energy collisions

Justin Cammarota, Leonard Gamberg, Zhong-Bo Kang, Joshua A. Miller, Daniel Pitonyak, Alexei Prokudin, Ted C. Rogers, and Nobuo Sato (Jefferson Lab Angular Momentum (JAM) Collaboration)

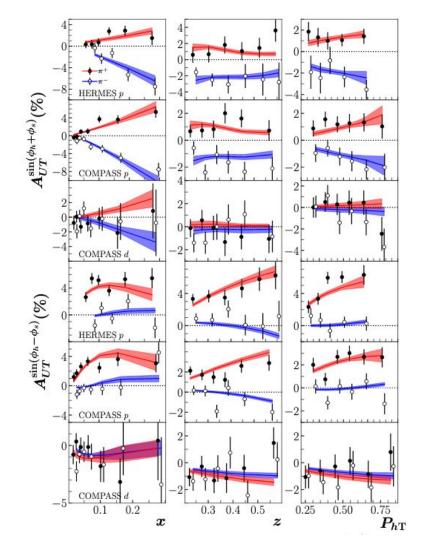
Phys. Rev. D **102**, 054002 – Published 8 September 2020

First simultaneous extraction of spin structure from "all" SSAs by JAM

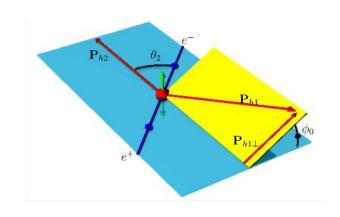

Cammarota, et al ('20)

Observable	Reactions	Non-Perturbative Function(s)	$\chi^2/N_{ m pts.}$	Refs.
	$e + (p, d)^{\uparrow} \rightarrow e + (\pi^+, \pi^-, \pi^0) + X$	$f_{1T}^\perp(x,k_T^2)$	150.0/126 = 1.19	[65, 66, 68]
$A_{ m SIDIS}^{ m Col}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,k_T^2), H_1^{\perp}(z,z^2p_{\perp}^2)$	111.3/126 = 0.88	[66, 68, 71]
$A_{ m SIA}^{ m Col}$	$e^{+} + e^{-} \to \pi^{+}\pi^{-}(UC, UL) + X$	$H_1^\perp(z,z^2p_\perp^2)$	154.5/176 = 0.88	[74-77]
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^\perp(x,k_T^2)$	5.96/12 = 0.50	[73]
$A_{ m DY}^{ m Siv}$	$p^{\uparrow} + p \rightarrow (W^+, W^-, Z) + X$	$f_{1T}^\perp(x,k_T^2)$	31.8/17 = 1.87	[72]
A_N^h	$p^{\uparrow} + p \rightarrow (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), F_{FT}(x, x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$	66.5/60 = 1.11	[7, 9, 10, 13]

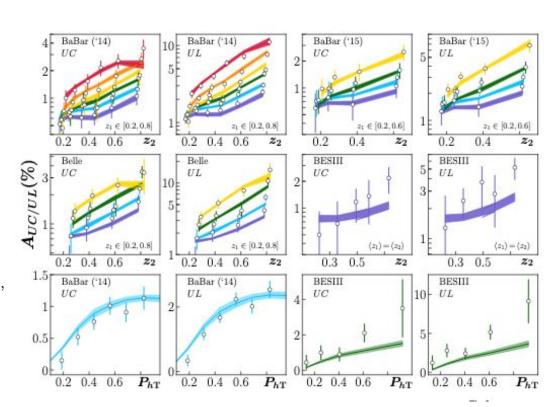
TABLE I. Summary of the SSAs analyzed in our global fit. There are a total of 18 different reactions. (UC and UL stand for "unlike-charged" and "unlike-like" pion combinations.) There are also a total of 6 non-perturbative functions when one takes into account flavor separation.


$$\chi^2/N_{
m pts.} = 520/517 = 1.01$$

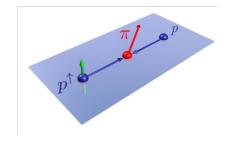
SSAs in SIDIS



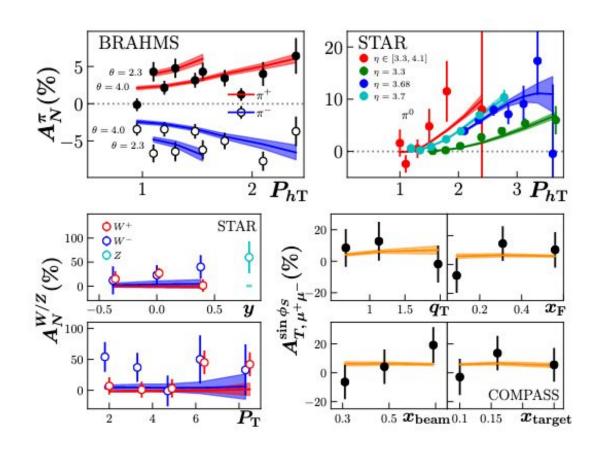
$$F_{UT}^{\sin(\phi_h-\phi_s)} = -\mathcal{C}_{ ext{SIDIS}} iggl[rac{\hat{h}\cdotec{k}_T}{M} f_{1T}^ot D_1 iggr]$$


$$F_{UT}^{\sin(\phi_h + \phi_s)} = -\mathcal{C}_{ ext{SIDIS}} igg[rac{\hat{h} \cdot ec{p}_T}{M_h} h_1 H_1^ot igg]$$

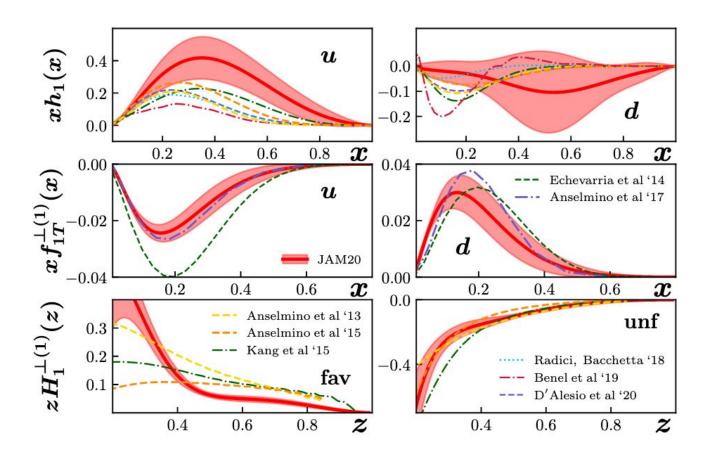
SSAs in e+ e-



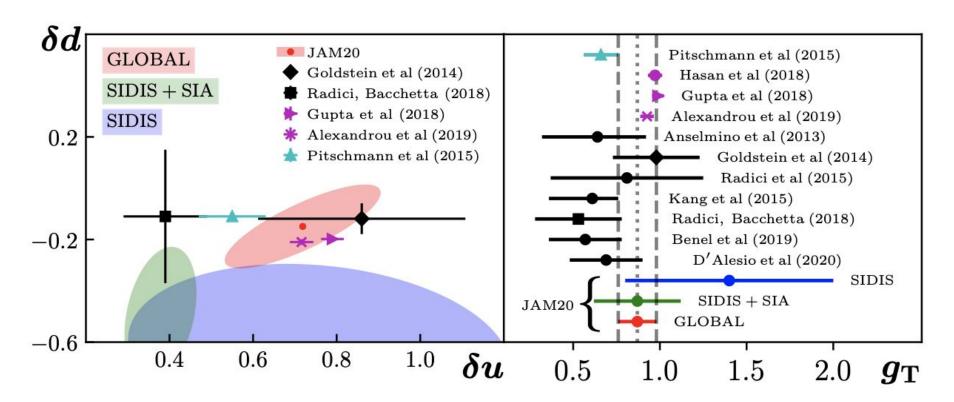
$$F_{\cos 2\phi_0}^{h_1h_2} \ = \ \mathcal{C}_{\rm SIA} \left[\frac{2(\hat{h} \cdot \vec{p}_{1T})(\hat{h} \cdot \vec{p}_{2T}) - \vec{p}_{1T} \cdot \vec{p}_{2T}}{M_{h_1}M_{h_2}} H_1^\perp \bar{H}_1^\perp \right],$$


SSAs in pp

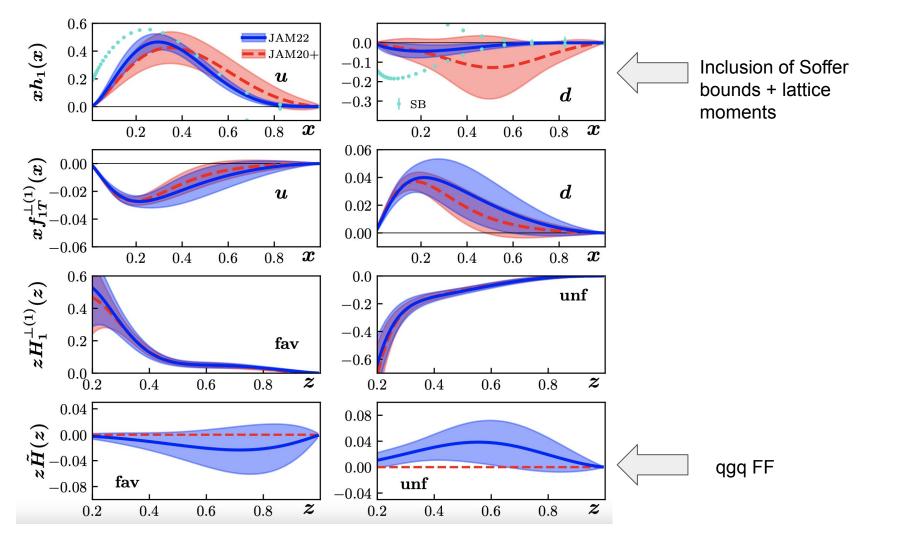
$$p(P, S_T) + p(P') \rightarrow h(P_h) + X$$

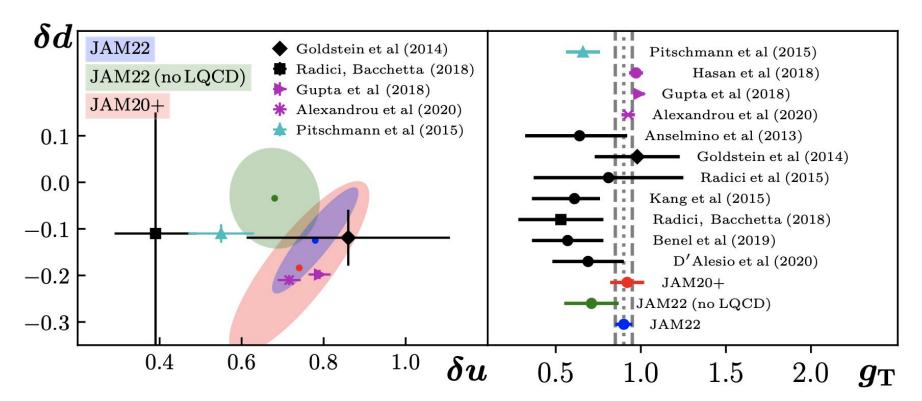


$$p(P, S_T) + p(P') \to \{W^+, W^-, \text{ or } Z\} + X$$
,


$$F^1_{TU} = -\mathcal{C}_{ ext{ew}} igg[rac{\hat{h} \cdot ec{k}_{1T}}{M} f_{1T}^{ot} ar{f}_1 igg]$$

Spin structures

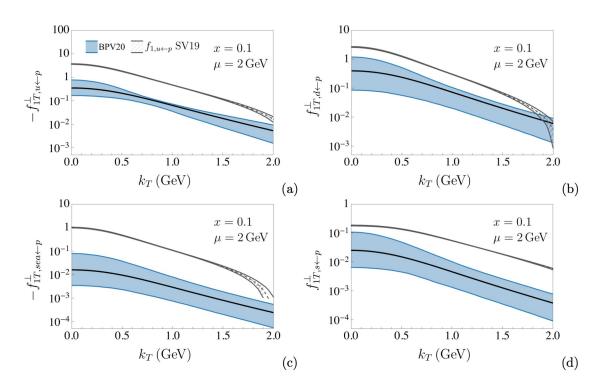

Tensorcharges


Updated version JAM 22

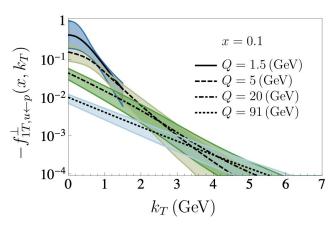
Observable	Reactions	Non-Perturbative Function(s)	$\chi^2/{ m npts}$	Exp. Refs.
$A_{UT}^{\sin(\phi_h-\phi_S)} \ A_{UT}^{\sin(\phi_h+\phi_S)}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$f_{1T}^\perp(x,ec k_T^2)$	182.9/166 = 1.10	[22, 24, 27]
$A_{UT}^{\sin(\phi_h+\phi_S)}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,\vec{k}_T^2), H_1^\perp(z,z^2\vec{p}_T^2)$	181.0/166 = 1.09	[22, 24, 27]
${}^*\!A_{UT}^{\sin\phi_S}$	$e + p^{\uparrow} \rightarrow e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), ilde{H}(z)$	18.6/36 = 0.52	[22, 24, 27]
$A_{UC/UL}$	$e^{+} + e^{-} \to \pi^{+}\pi^{-}(UC, UL) + X$	$H_1^\perp(z,z^2ec p_T^{2})$	154.9/176 = 0.88	[29–32]
$A_{T,\mu^+\mu^-}^{\sin\phi_S}$	$\pi^- + p^{\uparrow} \rightarrow \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$	6.92/12 = 0.58	[34]
$A_N^{W/Z}$	$p^{\uparrow} + p \rightarrow (W^+, W^-, Z) + X$	$f_{1T}^\perp(x,ec k_T^2)$	30.8/17 = 1.81	[35]
A_N^π	$p^{\uparrow}+p ightarrow (\pi^+,\pi^-,\pi^0) + X$	$h_1(x), F_{FT}(x,x) = rac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z), ilde{H}(z)$	70.4/60 = 1.17	[7, 9, 10, 13]
Lattice g_T	(<u> </u>	$h_1(x)$	1.82/1 = 1.82	[89]

TABLE I: Summary of the observables analyzed in JAM3D-22. There are a total of 21 different reactions. There are also a total of 8 non-perturbative functions when one takes into account flavor separation. The χ^2 is computed based on calculating for each point the theory expectation value from the replicas. *For the $A_{UT}^{\sin\phi_S}$ data we only use the x- and z-projections.

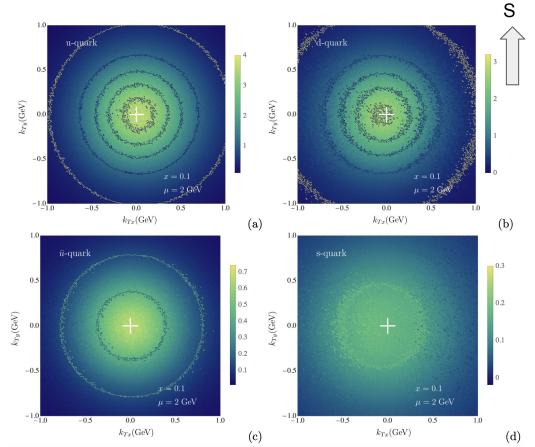
Tensorcharges ('22)



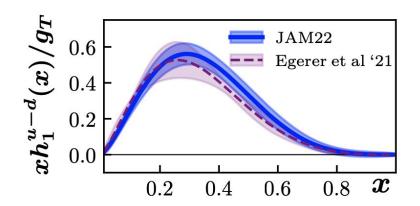
Extraction of the Sivers function from SIDIS, Drell-Yan, and W^\pm/Z boson production data with TMD evolution

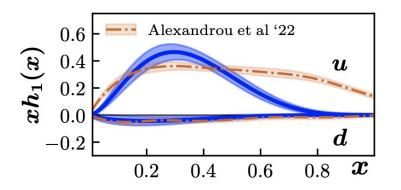

Marcin Bury^a Alexei Prokudin^{b,c} Alexey Vladimirov^a

SIDIS	$N_{ m pt}$	χ^2/N_{pt}	DY	$N_{ m pt}$	χ^2/N_{pt}
Compass08	4	$0.29^{+0.30}_{-0.01}$	CompassDY	2	$0.19^{+0.49}_{-0.15}$
Compass16	10	$0.34^{+0.36}_{+0.01}$	STAR.W+	5	$0.72^{+0.69}_{+0.40}$
Hermes π^+	11	$0.79^{+0.16}_{-0.05}$	STAR.W-	5	$0.92^{+0.31}_{-0.14}$
Hermes π^-	11	$0.49^{+0.08}_{+0.01}$	STAR.Z	1	$2.04^{+0.10}_{-1.15}$
Hermes K^+	12	$1.36^{+0.15}_{-0.11}$			
Hermes K^-	12	$1.62^{+0.12}_{-0.01}$			
Jlab	3	$0.26^{+1.13}_{-0.04}$			
SIDIS total	63	$0.88^{+0.15}_{+0.05}$	DY total	13	$0.90^{+0.31}_{+0.00}$
Total SIDIS and DY				76	$0.88^{+0.15}_{+0.05}$


Sivers function

Evolution effects




Momentum space tomography

\bigcirc	►= Nucleon Spin	Nucleon Polarization				
<u>-</u>	= Quark Spin	Unpolarized	Longitudinal	Transverse		
Quark Polarization	Unpolarized	f_1 • Number Density		f_{1T}^{\perp} \bigodot - \bigodot Sivers		
	Longitudinal		$g_1 \longrightarrow - \longrightarrow$ Helicity	$g_{1T}^{\perp} \underbrace{ - _{\text{Worm-Gear T}}^{\dagger} $		
	Transverse	h_1^{\perp} \bullet \bullet Boer-Mulders	h_{1L}^{\perp} \longrightarrow — \longrightarrow Worm-Gear L	$\begin{array}{c c} h_1 & - \\ \hline \\ \text{Transversity} \\ h_{1T}^{\perp} & - \\ \hline \\ \text{Pretzelosity} \\ \end{array}$		

Synergies with LQCD

loffe-time distributions

$$h(x,\mu) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} e^{-ix\nu} \mathcal{I}(\nu,\mu) \quad \text{with} \quad ,$$

$$2P^{+}S^{\rho_{\perp}} \mathcal{I}(P^{+}z^{-},\mu) = \left\langle P, S^{\rho_{\perp}} | \bar{\psi}(z^{-}) \gamma^{+} \gamma^{\rho_{\perp}} \gamma_{5} W_{+}(z^{-},0) \psi(0) | P, S^{\rho_{\perp}} \right\rangle$$

quasi distributions

$$ilde{q}(x,P_3) = \int_{-z_{
m max}}^{+z_{
m max}} rac{dz}{4\pi} \, e^{-ixP_3z} \, \langle N |\, \overline{\psi}(0,z) \, \Gamma W(z,0) \, \psi(0,0) \, | N
angle \, ,$$

Collinear LDFs and

Hybrid QED/QCD factorization

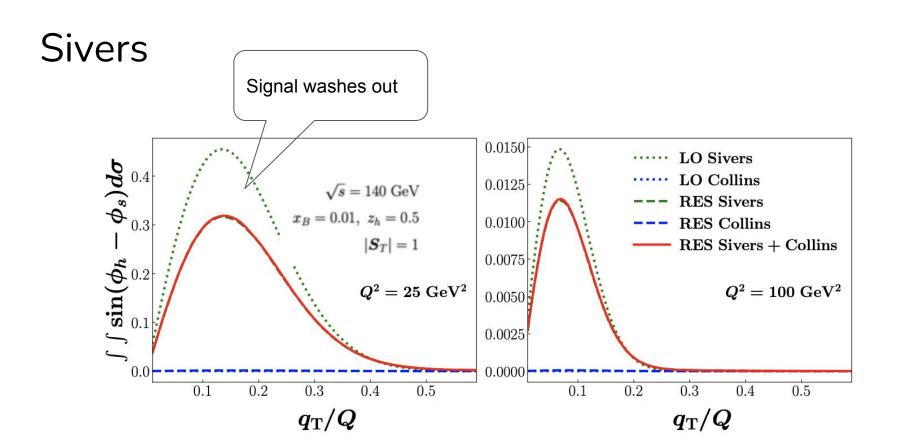
$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_i w_i F_i(x, Q^2, z, \mathbf{P}_{h\perp})$$

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2} = \int_{\zeta_{\min}}^1 d\zeta \int_{\xi_{\min}(\zeta)}^1 d\xi \underline{f_{k/l}(\xi)} D_{k'/l'}(\zeta)$$

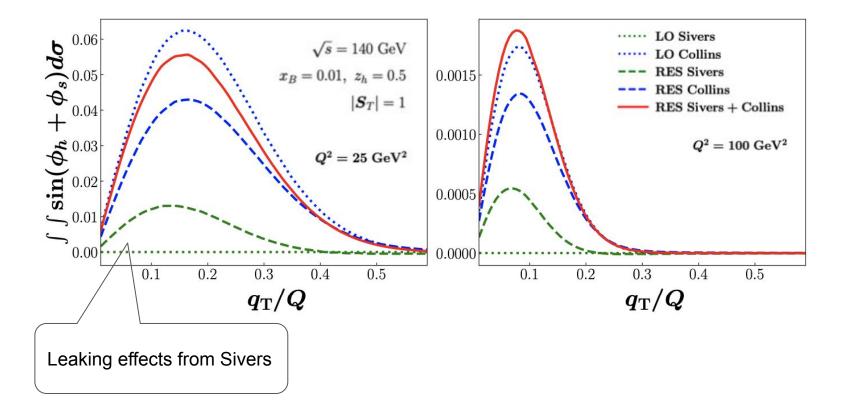
$$\times \frac{\hat{x}}{x\xi\zeta} \left[\frac{\alpha^2}{\hat{x}\hat{y}\hat{Q}^2} \frac{\hat{y}}{2(1-\hat{\varepsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x}} \right) \sum_i \hat{w}_i F_i(\hat{x}, \hat{Q}^2, \hat{z}, \hat{\mathbf{P}}_{h\perp}) \right]$$

Angular projections

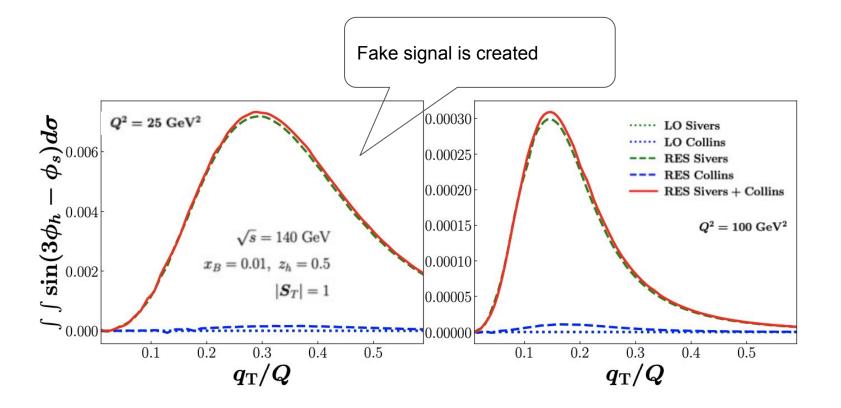
$$F_{UT,T}^{\sin(\phi_h - \phi_S)} \stackrel{\text{no QED}}{=} \int d\phi_h d\phi_S \sin(\phi_h - \phi_S) \left[\sin(\phi_h - \phi_S) F_{UT,T}^{\sin(\phi_h - \phi_S)} + \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right].$$



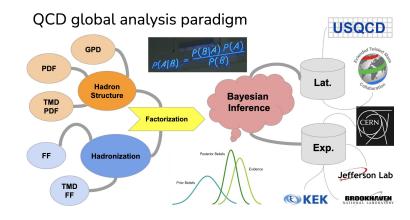
$$d\phi_h d\phi_S \sin(\phi_h - \phi_S) \sin(\phi_h + \phi_S) = 0$$

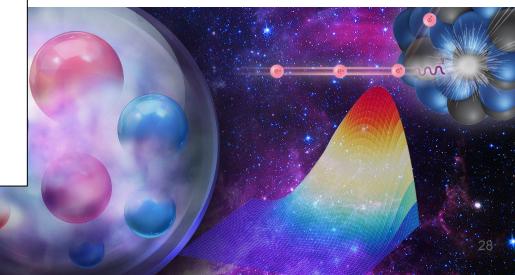


BUT with QED this does not hold!


$$\int d\phi_h d\phi_S \sin(\phi_h - \phi_S) \sin(\hat{\phi}_h + \hat{\phi}_S) \neq 0$$

Collins


$3\phi_h - \phi_s$



Summary/Outlook

- New era of QCD global analysis has started -> spin physics
- First generation of global analysis with uncertainty quantification are now available
- The community has build tools to embrace new data from JLab 12 GeV and prepare for EIC

 $\mathcal{L}_{ ext{QCD}} = \sum \overline{\psi}_q (i \gamma_\mu D^\mu - m_q) \psi_q - rac{1}{2} ext{Tr} [G_{\mu
u} G^{\mu
u}]$

