J-PARC muon g-2/EDM experiment

Yutaro Sato
Niigata University
On behalf of the J-PARC muon g-2/EDM collaboration
Muon anomalous magnetic moment \((a_\mu, g-2)\)

- Deviation of \(g\)-factor from the prediction of Dirac equation for fermions.

\[
- a_\mu = \frac{g-2}{2} = a_\mu(QED) + a_\mu(had) + a_\mu(weak) + a_\mu(\text{New Physics})
\]

- 4.2\(\sigma\) deviation between the SM prediction and measurements
 - \(\sigma_{\text{SM}} : 0.37\) ppm [white paper]
 - \(\sigma_{\text{exp}} : 0.35\) ppm [BNL+FNAL]

Electric Dipole Moment (EDM)

- If non-zero EDM exists, it means T-violation. \(\Rightarrow \) CP-violation
- Exp. upper. limit : \(d < 1.8 \times 10^{-19} e \cdot \text{cm}(95\% \text{ C.L.})\) by BNL E821.

\(\Rightarrow \) A new experiment to measure muon g-2 and EDM at J-PARC
Experimental Approaches

- In uniform B-field, muon spin rotates ahead of momentum due to $g-2 \neq 0$.

\[\bar{\omega} = \bar{\omega}_a + \bar{\omega}_\eta \]

\[= -\frac{e}{m_\mu} \left[a_\mu \bar{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \bar{B} + \frac{\vec{E}}{c} \right) \right] \]

- g-2 term
- EDM term

J-PARC E34 Simulation

- $P_\mu = 50\%$ $N_\mu = 5.7 \times 10^{11}$
- $200 \text{ MeV} < E_\mu < 275 \text{ MeV}$

- $d_\mu = 1 \times 10^{-20} \text{ e cm}$

- Up-down asymmetry

- \propto EDM
In uniform B-field, muon spin rotates ahead of momentum due to $g-2 \neq 0$.

\[
\bar{\omega} = \bar{\omega}_a + \bar{\omega}_\eta = -\frac{e}{m_\mu} \left[a_\mu \bar{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\bar{\beta} \times \bar{E}}{c} \right] + \frac{\eta}{2} \left(\bar{\beta} \times \bar{B} + \frac{\bar{E}}{c} \right)
\]

BNL E821 & FNAL E989
- Magic momentum
 \[\gamma = 29.3 \quad (p = 3.1 \text{ GeV}/c) \]
- Weak electric focusing.

\[
\bar{\omega} = -\frac{e}{m_\mu} \left[a_\mu \bar{B} + \frac{\eta}{2} \left(\bar{\beta} \times \bar{B} + \frac{\bar{E}}{c} \right) \right]
\]
In uniform B-field, muon spin rotates ahead of momentum due to $g - 2 \neq 0$.

\[
\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta \\
= -\frac{e}{m_\mu} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta}{2} \left(\frac{\vec{\beta} \times \vec{B} + \vec{E}}{c} \right)
\]

BNL E821 & FNAL E989

- Magic momentum
 \[\gamma = 29.3 \ (p = 3.1 \text{ GeV}/c) \]
- Weak electric focusing.

\[
\vec{\omega} = -\frac{e}{m_\mu} \left[a_\mu \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]
\]

J-PARC E34

- No electric field
- Very weak magnetic focusing

\[
\vec{\omega} = -\frac{e}{m_\mu} \left[a_\mu \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]
\]

→ Different systematic uncertainty.
→ Clear separation of $\vec{\omega}_a$ and $\vec{\omega}_\eta$.
Reaccelerated thermal muon beam

- No requirement of strong beam focusing by an electric field
 - Weak focusing B-field.
- Free from magic momentum of 3.094 GeV/c
 - Lower momentum beam of 300 MeV/c
 - Compact storage ring with excellent uniformity ($\Delta \sim 0.1$ ppm)
 - Full tracking detector for decay positron

Conventional muon beam
Emittance $\sim 1000 \pi$ mm \cdot mrad
- Strong focusing with electric field
- Muon loss
- Pion background

Reaccelerated thermal muon beam
Emittance $\sim 1 \pi$ mm \cdot mrad
- Free from any of the above
J-PARC muon g-2/EDM Experiment

1. Muon Beam Line and experimental area
2. Thermal muon
3. Muon linac
4. Injection
5. Storage
6. Detector

- Surface μ^+
- Cooling (25 meV)
- Acceleration (210 MeV)
- Injection
- Storage
- Positron detector

Initial goal Final goal
$g-2 \sim 0.45 \text{ ppm}$ \rightarrow 0.1 \text{ ppm}
$\text{EDM} \sim 10^{-21} \text{ e } \cdot \text{ cm}$
Construction of H-line up to H1 area has been finished.

The first beam of H-line was detected on Jan. 15, 2022.
The extension building (H2) is being ready for construction.
- **Surface muon (27 MeV/c) is stopped at a target and muonium (μ^+e^-) is emitted.**

- A muonium is ionized by laser and thermal muon beam (25 meV/c) is produced.

Muonium production target: Laser ablated Silica aerogel

- ×10 more muonium emission rate compared to flat silica aerogel.
- Various laser-ablated structures and aerogel materials were studied.
Surface muon (27 MeV/c) is stopped at an target and muonium (μ⁺e⁻) is emitted.

A muonium is ionized by laser and thermal muon beam (25 meV/c) is produced.

Laser-resonant ionization methods

Original plan: an intense 122 nm (Lyman-α) laser
 - Efficient single photon excitation
 - Challenging 100 μJ Lyman-α laser development

Plan B: ionization scheme with 244 nm laser
 - Established laser technology
 - Collaboration with the muonium 1S-2S spectroscopy measurement experiment
Muon Acceleration

- Thermal muons are reaccelerated up to 300 MeV/c by muon LINAC.
 - Fast acceleration to avoid muon decay loss
 - No emittance growth.
- Different cavity to realize fast re-acceleration through wide β region.
- **World’s 1st acceleration of μ in Mu*(= μ⁺e⁻e⁻) in 2018 by RFQ**
 - Acceleration of thermal μ is planned in 2023 by RFQ
The rest of acceleration cavities are designed and their performances are being evaluated with prototypes.

- IH-DTL: Fabrication of real-type was completed.
- DAW-CCL: 1st tank is being fabricated.
- DLS: Prototypes will be fabricated FY2022

R&Ds for beam monitor system is also ongoing.

For injection of muon beam into compact storage ring, the 3D-spiral injection scheme has been invented.

- Smooth connection between injection and storage regions.
- Pulsed magnetic kicker to guide muon beam into stable orbit.
- Weak-focusing magnetic field to control muon beam within a few cm.

Higher injection efficiency: ~85% ⇒ 3-5% @BNL E821 [PRD 73 072003 (2006)]
Demonstration experiment of the injection scheme with low momentum electron beam is progressing well.
- Visualize 3D spiral beam trajectory with CCD camera.
- Prototypes of kicker was fabricated and will be demonstrated.

Demonstration experiment setup

Prototypes of kicker
• 3T MRI-type superconducting solenoid magnet is used to store a muon beam.

M. Abe et al., Nuclear Inst. and Methods in Physics Research A890, 51 (2018)
Muon Storage Magnet

- High uniformity of the magnetic field is achieved by **shimming**.
 - Local uniformity of 1 ppm was confirmed with the magnet used in the MuSEUM experiment.
- **High precision NMR probes** are used for field measurement.
 - Cross-calibration is underway in a joint research project between Japan and the US.
 - An accuracy of 15 ppb has been achieved.

Cross-calibration of FNAL and J-PARC field probes
Positron tracks are measured by **Silicon-strip detector**.

- Positrons with a momentum of 100-300 MeV/c
- High hit rate capability (6 tracks/ns) and stability over early to late rate changes (1.4 MHz → 10 kHz)
- Design optimized for pulsed beam.

Event display with 25 muons

Quarter vane module

Reconstruction efficiency

Simulation

- 66 cm
- 4 sensors
- 32 ASICs
- 0.06 tracks/ns
- 0.6 tracks/ns
- 6 tracks/ns

used for g-2 analysis
Major components are in or completed the mass-productions.
Prototype module is being assembled.

Flexible printed circuit boards
- Made by Fujikura Ltd.
- Mass-production: done

Silicon-strip sensor
- Made by Hamamatsu Photonics K.K., S13804
- Strip pitch: 190 μm
- Mass-production: ongoing

Quarter vane module

Readout ASIC (SiT)
- Silterra 180-nm CMOS process
- Binary output with sampling interval of 5 ns
- Mass-production: done

Rigid printed circuit boards
- Prototypes were fabricated and being tested.
Statistics Estimation

- Overall efficiency: 1.3×10^{-5}
- Assuming 2.2×10^7 sec (~255 days) of data taking, total number of reconstructed e^+ is 5.7×10^{11}.

- 2-year running will reach the BNL precision of a_μ.
- Systematic uncertainties will be much smaller than the statistical ones.
Reach the BNL precision in ~2-year running.
J-PARC Muon g-2/EDM Collaboration

110 members from Canada, China, Czech, France, India, Japan, Korea, Netherlands, Russia, USA

Subgroups
- Surface muon beam
 leader: T. Yamazaki, N. Kawamura
- Ultra-slow muon
 leader: K. Ishida, G. Marshall
- LINAC
 leader: Y. Kondo, M. Otani
- Injection and storage
 leader: H. Iinuma
- Storage magnet, field measurements
- Detector
 leader: T. Yoshioka
- DAQ and computing
 leader: Y. Sato, K. Hayasaka
- Analysis
 leader: T. Yamanaka

Interface coordinators
- K. Ishida
- M. Otani
- Y. Kondo
- H. Iinuma
- T. Kume
- Y. Sato
- T. Suehara
- T. Yamanaka

Committees
- Speakers committee
 chair: K. Ishida
- Publication committee
 chair: B. Shwartz

New Domestic institutes:
- Welcome University of Groningen
- Kyushu, Nagoya, Tohoku, Niigata, Tokyo, Ibaraki, RIKEN, JAEA, etc.
- KEK: IPNS, IMSS, ACC, CRY, MEC, CRC

The 24th J-PARC muon g-2/EDM collaboration meeting, June 8-10, 2022
J-PARC muon g-2/EDM experiment aims to measure muon g-2 and EDM with a method different from BNL/FNAL experiment.
- Low emittance muon beam with no strong focusing.
- MRI-type storage ring with a good injection efficiency and high uniformity of local B-field.
- Full-tracking detector with large acceptance

The experiment is getting ready for realization.
- Construction of new muon beam line “H-line”
- R&Ds of the subsystem is going well.

Expecting data taking from FY2027.