

For STAR Collaboration

Outline:

- Physics Motivations
- Analysis Results
- Comparison to prior measurements
- Comparison to model calculations
- Summary

STAR

Initial Geometry in Small-sized Systems

Model a: standard Glauber model *Phys. Rev. Lett.* 113, 434 112301 (2014) Model b: smooth gluon field sourced by nucleons *Phys. Rev. C* 94, 024919 (2016) Model c: smooth gluon field sourced by valence quark *Phys. Rev. C* 94, 024919 (2016) Model d: lumpy gluon field soueced by valence quark(IP-Glasma) *Phys. Rev. Lett.* 108, 252301 *Sub-nucleon gluon field fluctuations: strong influence on the initial geometry eccentricity for small-sized system Measuring flow in small-sized system can provide invaluable constraints for such effect*

Data Analyses

STAR Experiment at RHIC

Measurements for p/d/³He+Au collisions @ 200 GeV

➤ Centrality:

i) Number of tracks in TPC 0.2<p_T<3.0 GeV/*c*, $|\eta|$ <0.9 ii) BBC charge in Au-going direction -5.0< η <-3.3

 Two-particle correlation functions constructed for trigger and associated particles with 0.2 <p_T < 2.0 GeV/c
 | η |<0.9 and |Δη| > 1.0

 ✓ v₂{2}(p_T), v₃{2}(p_T) extracted from correlation functions following non-flow subtraction

Long-range two-particle correlators and v_n extraction (I)

Three methods are employed for non-flow subtraction by using min-bias pp as a reference!

$$\frac{1}{N_{trig}} dN/d\Delta\phi = c_0 (1 + 2\sum_{n=1}^4 c_n \cos(n\phi))$$

$$\checkmark 1. \text{ via } c_0: c_{n,sub}^{sys.} = c_n^{sys.} - (c_0^{pp}/c_0^{sys.})c_n^{pp}; n=2,3$$

$$\checkmark 2. \text{ via } c_1: c_{n,sub}^{sys.} = c_n^{sys.} - (c_1^{sys}/c_1^{pp})c_n^{pp}; n=2,3$$

$$v_{n,sub}^{sys.}(p_T) = c_{n,sub}^{sys.}(pT,ref) / \sqrt{c_{n,sub}^{sys.}(ref)}$$

Long-range two-particle correlators and v_n extraction (II)

"F" represents the modification for the long-range away-side jet between **p/d/³He+Au and p+p**

STAR differential v_n measurements for p/d/³He+Au

 \blacktriangleright Non-flow subtracted v₂ and v₃ are method-independent

STAR differential v_n measurements for p/d/³He+Au

Differential v₂ and v₃ measurements for different centrality definitions

TPC centrality: Centrality and 2p correlation measured in same rapidity BBC centrality: Centrality and 2p correlations measured in different rapidity, avoid auto-correlation Results are consistent between two kinds of different centrality definitions with mid and \checkmark backward rapidity regions Shengli Huang CIPANP 2022 8

v_2 with different $\Delta \eta$ cut

 v_2 after nonflow subtraction is insensitive to $\Delta \eta$ cut and subtraction method

v_3 with different $\Delta \eta$ cut

 v_3 after nonflow subtraction is also insensitive to $\Delta \eta$ cut and subtraction method

Nonflow vs. $\Delta \eta$ from pp@HIJING

Larger $\Delta \eta$ has only tiny effect to suppress the nonflow for v₃ measurements

Longitudinal Decorrelation

The STAR and PHENIX v₂ and v₃ for ³He+Au, show reasonable agreement

The STAR and PHENIX v₂ and v₃ for ³He+Au, show reasonable agreement

 The STAR and PHENIX measurements for v₂ are also in reasonable agreement for p/d+Au
 Some difference(~25%) for p_T>1 GeV/c in d+Au and p_T<1 GeV/c in p+Au

The STAR and PHENIX v₂ and v₃ for ³He+Au, show reasonable agreement

- The STAR and PHENIX measurements for v₂ are also in reasonable agreement for p/d+Au
 Some difference(~25%) for p_>1 GeV/c
 - Some difference(~25%) for p_T>1 GeV/c in d+Au and p_T<1 GeV/c in p+Au
- The STAR and PHENIX v₃ for p/d+Au, show similar p_Tdependence
 - ✓ But magnitudes differ by a factor of 3
 - ✓ System-independent STAR v₃
 - ✓ System-dependent PHENIX v₃
- > Longitudinal decorrelation effect?

Comparison to model

Sonic: P. Romatschke, arXiv:1502.04745 [nucl-th].

Sonic model with initial geometry eccentricity without gluon field fluctuations under-predicts v₃ in all systems

Model	a	b	С	d
	$arepsilon_2^a(arepsilon_3^a)$	$arepsilon_2^b(arepsilon_3^b)$	$arepsilon_2^c(arepsilon_3^c)$	$arepsilon_2^d(arepsilon_3^d)$
³ He+Au	0.50(0.28)	0.52(0.35)	0.53(0.38)	0.64(0.46)
d+Au	0.54(0.18)	0.51(0.32)	0.53(0.36)	0.73(0.40)
$p{+}\mathrm{Au}$	0.23(0.16)	0.34(0.27)	0.41(0.34)	0.50(0.32)

Comparison to model

- > It overpredicts v_2 but reproduces v_3 . Larger ε_2 from IP-Glasma model or initial momentum correlations?
- STAR measurements provide useful constraints on model tuning in future

 $egin{array}{c|c} a & b & c & d \ arepsilon_2^a(arepsilon_3^a) & arepsilon_2^b(arepsilon_3^b) & arepsilon_2^c(arepsilon_3^c) & arepsilon_2^d(arepsilon_3^d) \end{array}$

0.52(0.35)

0.51(0.32)

0.34(0.27)

Model

d+Au

p + Au

 3 He+Au

0.50(0.28)

0.54(0.18)

0.23(0.16)

803, 135322 (2020)

IP-Glasma+Hydro: Phys. Lett. B

0.53(0.38)

0.53(0.36)

0.41(0.34)

0.64(0.46)

0.73(0.40)

0.50(0.32)

Comparison to model

- It over predicts v₂ but reproduces v₃. Larger ε₂ from IP-Glasma model or initial momentum correlations?
- STAR measurements provide useful constraints for model tuning in future

> Hydro with eccentricity from model b or c could describe the data better

IP-Glasma+Hydro: Phys. Lett. B 803, 135322 (2020)

Projection from 100M 0-5% d+Au@200GeV from Run21 with improved acceptance

Mean values are from current measurements

100M MB and 100M HM(0-5% selected by EPD) triggered events have been taken by STAR in 2021

Improved acceptance: iTPC ($|\eta| < 1.5$) + EPD(2.1< $|\eta| < 5.1$)

Further investigate the sub-nucleon fluctuations and longitudinal decorrelation in small-sized system

Outlook: O+O@RHIC 2021

- STAR has taken 400M MB and 200M HM O+O events in 2021
- ✓ Large rapidity coverage |η|<1.5 due to iTPC upgrade
- ✓ Trigger HM event at both middle or forward rapidity

First comparison between RHIC & LHC with ~identical Glauber geometry but different sub-nucleon fluctuation (Q_s) for a factor of 10 difference in energy

S.Huang , Z. Chen, J. Jia, W. Li: PhysRevC.101.021901

STAR measured v₂ and v₃ as a function of p_T in central p/d/³He+Au collisions. The extracted flow signals are found to be consistent among different non-flow subtraction methods

A system independent v₃ has been found, indicating that subnucleon gluon field fluctuations have a strong influence on initial geometry for small-sized systems

In future, the new d+Au and O+O data will provide more information to study mini-QGP and sub-nucleon structure

Backup

Backup

