

Dijet Measurements in Heavy Ion Collisions

Timothy Rinn

Jet quenching in heavy ion collisions

- Jet constituents lose energy while traversing the Quark Gluon Plasma
 Results in phenomenon known as Jet Quenching
- $> R_{AA}$ provides key evidence of jet momentum modification
 - Differential measurements of jet modifications are needed to understand the mechanisms of jet energy loss

Dijets in heavy ion collisions

- Hard scattering processes produce balanced partons
 - Significant jet asymmetries observed in heavy ion collisions
- Back-to-back jet pairs provide access to asymmetric energy loss
 - Path length dependent energy loss
 - Energy loss fluctuations

$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \Delta \phi > \frac{\pi}{2}$ Asymmetric energy loss Phys.Rev.Lett.105:252303,2010 (1/N) dN/dA Pb+Pb Data 0-10% s_{NN}=2.76 TeV Op+p Data **ATLAS** HIJING+PYTHIA Pb+Pb ._{int}=1.7 μb⁻¹ $E_{T1} > 100 \text{ GeV}$ $E_{T2} > 25 \text{ GeV}$ 0.2 0.4 0.8 0.6 A Early Dijet measurements in Pb+Pb collisions observed significant modifications

Timothy Rinn

A picture of dijets in HI collisions

Leading jets are produced near the surface and rapidly exit the medium
 Short trajectory through QGP
 Largely unmodified

Subleading jets traverse a large path length in the QGP

Significant QGP interaction and large energy loss

Early dijet results:

Unfolded dijet analysis overview:

Two-dimensional $(p_{T,1}, p_{T,2})$ distributions are measured for the leading dijet pair per event

Unfolded for detector effects using 2D Bayesian unfolding

 \succ Simultaneously correct for migrations of leading and subleading jet p_T

Unfolded 2D distributions can be projected/integrated to extract dijet observables

$$x_J \equiv p_{T,2}/p_{T,1}$$

Dijet balance observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

Enables direct comparison of the x_J shape across centrality in Pb+Pb and in pp

Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_J}$ \succ Enables evaluation of the dijet per event yields as a function of x_J

> Provides insight into the dynamics of dijet energy loss

Dijet balance observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

Enables direct comparison of the x_J shape across centrality in Pb+Pb and in pp

Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_J}$ \succ Enables evaluation of the dijet per event yields as a function of x_J \triangleright Provides insight into the dynamics of dijet energy loss

$x_J \equiv p_{\mathrm{T,2}}/p_{\mathrm{T,1}}$

Pair normalized x_J distributions

- Fully unfolded measurements of the x_J shape enables direct comparisons between Pb+Pb and pp collisions
- Significant modification from pp collisions are observed
- A peak was observed in 0-10% Central Pb+Pb at $x_J \approx 0.5$
 - Explaining this behavior has been a challenge in the community

Pair normalized x_J distributions

- Utilizing the large LHC Run 2 sample the measurement of the dijet momentum balance was repeated
- 5.02 TeV analysis reproduces the peak observed in earlier measurements

Pair normalized x_I : comparison with theory

https://arxiv.org/pdf/2205.00682.pdf dN_{pair} dx d 3.5 ATLAS 100 < p_{T.1} < 112 GeV LIDO: $\mu_{min}=1.3$ N Pair 158 < p₁ < 178 GeV LIDO: μ_{min} =1.8 ⊢ 398 < p_ | < 562 GeV 2.5 1.5 anti- $k_t R = 0.4$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.5 0-10% Pb+Pb 2.2 nb⁻

0.6

0.7

0.8

0.9

LIDO is a transport model containing both radiative and collisional energy loss sources and tuned to world R_{AA} data

LIDO well predicts the x_J shape for intermediate and high $p_{T,1}$ in central events

Does not reproduce the peak observed at intermediate x_J at low p_{T,1}

0.3

0.4

0.5

ХJ

Dijet x_J observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$ > Enables direct comparison of the x_J shape across centrality in Pb+Pb and in pp

Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_J}$ \succ Enables evaluation of the dijet per event yields as a function of x_J \succ Provides insight into the dynamics of dijet energy loss

Dijet quenching: Some thoughts

Why is there no enhancement over pp at low x_I ?

- Suppression of both jets is key!
 - Both leading and subleading jets lose significant energy

How does this compare to expectations from surface bias effects?

Surface Bias expected to create a significant enhancement asymmetric jets

Dijet nuclear modification factors (R_{AA}^{pair})

Significant suppression of both leading and subleading jets are observed across jet p_T

Subleading jets are systematically more suppressed than leading jets

Evidence for suppression of subleading relative to leading jets in dijets is observed

3σ significant relative suppression observed in peripheral Pb+Pb

arXiv:2101.04720

Leading dijet fragmentation

 $\begin{array}{ccc} 5.02 \; \text{TeV} & pp\; 320 \; \text{pb}^{\text{-1}} \; \; \text{PbPb}\; 1.7 \; \text{nb}^{\text{-1}} \\ \text{anti-k}_{\text{T}} \; \text{R} = 0.4, \; |\eta_{\text{iet}}| < 1.6, \; \text{p}_{_{\text{T},1}} > 120 \; \text{GeV}, \; \text{p}_{_{\text{T},2}} > 50 \; \text{GeV}, \; \Delta \phi_{_{1,2}} > \frac{5\pi}{6} \end{array}$

CMS

Leading Jets

CMS SubLeading Jets

 ρ is proportional to track momentum density in a radius window

Subleading jets for $x_J < 0.6$ observe significant enhancement of fragment momentum between $0.2 < \Delta R < 0.4$ arXiv:2101.04720

Leading dijet fragmentation

 $\begin{array}{ccc} 5.02 \; \text{TeV} & pp\; 320 \; \text{pb}^{\text{-1}} \; \; PbPb\; 1.7 \; nb^{\text{-1}} \\ \text{anti-k}_{\text{T}} \; \text{R} = 0.4, \; |\eta_{\text{iet}}| < 1.6, \; \text{p}_{_{\text{T},1}} > 120 \; \text{GeV}, \; \text{p}_{_{\text{T},2}} > 50 \; \text{GeV}, \; \Delta \phi_{_{1,2}} > \frac{5\pi}{6} \end{array}$

CMS

Leading Jets

CMS SubLeading Jets

 ρ is proportional to track momentum density in a radius window

Subleading jets for $x_J < 0.6$ observe significant enhancement of fragment momentum between $0.2 < \Delta R < 0.4$

For symmetric jets similar modification is seen for the leading and subleading jet

Jet substructure in dijets

Substructure of subleading jets enables probing of jet size dependence to dijet asymmetry

> Do dijets with wider subleading jets experience enhanced asymmetry?

 $A_{J} = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$

Opening angle dependence to A_I

STAR observes significant modification of the A_J shape in central Au+Au

- ➢ Within uncertainties no significant θ_{SI} dependence for 0.1 < θ_{SI}
 - $\succ p_T$ asymmetry of narrow and wide jets are similar

Thoughts for future dijet measurements:

- Event plane angle dependence to dijet momentum balance
 - Directly explore the role of path length dependent energy loss effects
- Jet Structure/Radius Scan
 - Gain insight to the role of the jet structure to the dijet suppression
- Measure jet quenching in small systems
 - Subleading jets provide enhanced sensitivity to energy loss effects

Precision unfolded measurements of dijets at RHIC:

Stay tuned for results from sPHENIX and STAR using high statistics 2023-2025 runs! W

Backups

Early dijet results:

Dijet nuclear modification factor: R_{AA}^{pair}

 $R_{AA}^{pair}(\mathbf{p}_{T,1})$ quantifies the suppression of the **leading jet in a dijet**

 $R_{AA}^{pair}(p_{T,2})$ quantifies the suppression of the subleading jet in a dijet

Dijet threshold condition of $\frac{p_{T,2}}{p_{T,1}} > 0.32$

Dijet fraction of inclusive jets

Measured fractions of inclusive jets which are part of the leading **dijet**, the **leading jet** of the dijet, or the **subleading** jet of the dijet

At 100 GeV: 83% of inclusive jets are part of the leading dijet \blacktriangleright Over 95% for $p_T^{reco} > 200$ GeV

Higher p_T jets \rightarrow more collimated \rightarrow more balanced

Timothy Rinn

Smooth evolution from central Pb+Pb events towards pp

Significant modifications from pp collisions observed even at the highest $p_{\mathrm{T,1}}$

Timothy Rinn

Pair normalized x_J : comparison with theory <u>https://arxiv.org/pdf/2205.00682.pdf</u>

> Reproduces the x_J shape for intermediate and high $p_{T,1}$ in central events

LIDO does not reproduce the peak observed at intermediate x_J at low $p_{T,1}$

arXiv:2101.04720

Leading dijet fragmentation

 $\begin{array}{ccc} 5.02 \; \text{TeV} & pp\; 320 \; \text{pb}^{\text{-1}} \; \; \text{PbPb}\; 1.7 \; \text{nb}^{\text{-1}} \\ \text{anti-k}_{\text{T}} \; \text{R} = 0.4, \; |\eta_{\text{jet}}| < 1.6, \; \text{p}_{_{\text{T},1}} > 120 \; \text{GeV}, \; \text{p}_{_{\text{T},2}} > 50 \; \text{GeV}, \; \Delta \phi_{_{1,2}} > \frac{5\pi}{6} \end{array}$

CMS

Leading Jets

CMS SubLeading Jets

 ρ is proportional to track momentum density in a radius window

Leading jets observe enhancement of momentum caried at large radii for Symmetric dijets relative to inclusive and $x_I < 0.6$

$$\mathbf{P}(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \Sigma_{\text{jets}} \Sigma_{\text{tracks} \in (\Delta r_a, \Delta r_b)} p_{\text{T}}^{\text{ch}},$$

 $\rho(\Delta r) = \frac{P(\Delta r)}{\sum_{\text{jets}} \sum_{\text{tracks} \in \Delta r < 1} p_{\text{T}}^{\text{ch}}}.$

Dijet azimuthal correlations

HIN-21-002

Dijet v_2 was measured by the CMS collaboration

Significant non-zero dijet v₂ is observed

Increases with increasing event ellipticity

Consistent v₂ as measured for high p_T hadrons

sPHENIX: Jets

➢ State of the art Jet detector at RHIC

➢ Full Hadronic and
 Electromagnetic
 calorimetery
 ➢ Full azimuthal coverage
 ➢ |η| < 1.1 acceptance

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	$ z < 10 { m cm}$
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb^{-1}}$
					0.01 pb ⁻¹ [10%- <i>str</i>]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

