Recent Collinear Fragmentation Function Results 9-3-2022 CIPANP

Presenter: Eric Moffat Argonne National Lab Collaborators: Wally Melnitchouk Ted Rogers Nobuo Sato

Jefferson Lab Angular
AM Momentum Collaboration

Outline

- Fragmentation Function Overview
- Most recent Jefferson Lab Angular Momentum (JAM) Collaboration fit of Fragmentation Functions (FFs)
- Recent FF results from other groups
- Summary and Outlook

What are fragmentation functions?

• Probability hadron has fraction z of parton's longitudinal momentum

Processes involving fragmentation functions

- Single Inclusive Electron/Positron Annihilation (SIA)

Processes involving fragmentation functions

- Semi-inclusive Deeply Inelastic Scattering (SIDIS)

 $e^{-}(l) + p(P) \rightarrow e^{-}(l') + H(P_h) + X(P_X)$

JAM20-SIDIS

- JAM20-SIDIS:
 - Repeat of JAM19 with addition of unidentified charge hadrons
 - Simultaneously fit:
 - Unpolarized PDFs
 - Unpolarized FFs
 - Charged pion, kaon, and unidentified hadron

JAM Methodology

- Multi-Step Monte Carlo approach utilizing Bayesian Inference
- Bayesian Inference:
 - Baye's Theorem:

 $\mathcal{P}(\mathbf{a} | \text{data})$

• Likelihood Function:

 $\mathscr{L}(\mathbf{a}, data) = e\mathbf{z}$

~
$$\mathscr{L}(\mathbf{a}, data)\pi(\mathbf{a})$$

$$\operatorname{xp}\left(-\frac{1}{2}\chi^2(\mathbf{a}, \operatorname{data})\right)$$

JAN Methodology

• Chi squared:

$$\chi^{2}(\mathbf{a}, \text{data}) = \sum_{i,e} \left[\left(\frac{d_{i,e} - \sum_{k} r_{e}^{k} \beta_{i,k}^{k}}{\alpha_{i,e}} \right) \right] \right]$$

Г

- Least squares fit
 - Minimum Chi squared
 - Maximum Likelihood

 $\frac{\partial_{i,e}^{k} - T_{i,e}/N_{e}}{\partial_{e}} \right)^{2} + \sum_{k} \left(r_{e}^{k}\right)^{2} + \left(\frac{1 - N_{e}}{\delta N_{e}}\right)^{2}$

JAM Methodology

- Monte Carlo approach:
 - Expectation value and variance of an observable:

$$E[\mathcal{O}] = \int d\mathbf{a} \mathcal{P}(\mathbf{a} | \text{data}) \mathcal{O}(\mathbf{a})$$

• Approximate using a finite number of replicas:

$$E[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} \mathcal{O}(\mathbf{a}_k)$$

$$V[\mathcal{O}] = \int d\mathbf{a} \mathcal{P}(\mathbf{a} | \text{data}) \left(\mathcal{O}(\mathbf{a}) - E[\mathcal{O}] \right) \right)^2$$

$$V[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} \left(\mathcal{O}(\mathbf{a}_k) - E[\mathcal{O}]) \right)^2$$

Multi-Step Process

Observables

- Utilize NLO in calculation of observables
- Data Sets: \bullet
 - Inclusive Deep Inelastic Scattering (DIS)
 - BCDMS, NMC, SLAC, HERA
 - Semi-Inclusive DIS (SIDIS)
 - COMPASS
 - Single-Inclusive e+/e- Annihilation (SIA)
 - TASSO, TPC, TOPAZ, BELLE, BABAR, ARGUS, DELPHI, ALEPH, OPAL, SLD
 - Drell-Yan Scattering (DY) \bullet
 - E866

Kinematic Coverage

Parametrization

• Functional Form:

$$T(z; \boldsymbol{a}) = M \frac{z^{\alpha} (1 - 1)^{\alpha}}{\int_0^1 \mathrm{d} z z^{\alpha + 1}}$$

• Unidentified Charged Hadron FF:

$$D_i^{h^+} = D_i^{\pi^+}$$

 $\frac{-z)^{\beta} \left(1 + \gamma \sqrt{z} + \delta z\right)}{1 \left(1 - z\right)^{\beta} \left(1 + \gamma \sqrt{z} + \delta z\right)}$

 $^{+} + D_{i}^{K^{+}} + D_{i}^{res^{+}}$

reaction		$\chi^2_{ m red}$	N_{dat}	
DIS		1.29	2680	-
DY		1.52	250	
SIDIS	π^{\pm}	1.39	498	I
SIA	K^{\pm}	1.38	494	I
	h^{\pm}	0.85	498	
	π^{\pm}	1.09	231	ARC 3AE BEI TAS
	K^{\pm}	1.37	213	TAS TAS TAS TAS
	h^{\pm}	1.15	120	TPO TPO FOI SLI
total		1.26	4984	SLI ALE OH (PA) (PA) (PA)
				.PH .RG AB BEI

$$\chi^{2}_{\text{red}} = \frac{1}{N} \sum_{i,e} \frac{1}{\alpha^{2}_{i,e}} \left(d_{i,e} - \mathbf{E} \left[\sum_{k} r^{k}_{e} \beta^{k}_{i,e} + T_{i,e} / N_{e} \right] \right)$$

residual $(e,i) = \frac{1}{\alpha_{i,e}} \left(d_{i,e} - \mathbf{E} \left[\sum_{k} r^{k}_{e} \beta^{k}_{i,e} + T_{i,e} / N_{e} \right] \right)$

SIA Data over theory comparison: pions

SIA Data over theory comparison: kaons

SIA Data over theory comparison: hadrons

SIDIS Data and theory comparison: pions

SIDIS Data and theory comparison: kaons

SIDIS Data and theory comparison: hadrons

FF Results

PDF Results

Strange PDF suppression

- Best fits to kaon SIA data favor smaller strange PDFs
- Consistent with JAM19 findings

- DSS: de Florean, Sassot, and Stratmann 1.5
 - Utilize single fits
- Pion results:
 - Borsa, et. al., Phys.Rev.Lett. 129 (2022)
 - NNLO fit to SIA and SIDIS data
 - For SIDIS, use NNPDF4.0 for the PDF contribution
 - Ball, et. al. Eur.Phys.J.C 82 (2022)

- Kaon results:
 - Hernandez-Pinto, et. al., J.Phys.Conf.Ser. 912 (2017)
 - NLO fit to SIA, SIDIS, and PP data
 - For SIDIS, used MMHT 2014 for the PDF contribution
 - Harland-Lang, et. al. Eur.Phys.J.C 75 (2015)

- Proton results:
 - de Florian, et. al., Phys.Rev.D 76 (2007)
 - NLO fit to SIA and PP data

- Unidentified hadron results:
 - de Florian, et. al., Phys.Rev.D 76 (2007)
 - NLO fit to SIA and PP data

- Fragmentation functions from the NNPDF group
 - Monte Carlo approach using a neural network
- Pion results:
 - Bertone, et. al., Eur.Phys.J.C 77 (2017)
 - Up to NNLO fit to SIA data

Kaon results:
Bertone, et. al., Eur.Phys.J.C 77 (2017)
Up to NNLO fit to SIA data

- Proton results:
 - Bertone, et. al., Eur.Phys.J.C 77 (2017)
 - Up to NNLO fit to SIA data

0.75 0.25

- Unidentified hadron results:
 - Bertone, et. al., Eur.Phys.J.C 78 (2018)
 - Up to NLO fit to SIA and PP data

MAP FFs

- Multi-dimensional Analyses of Partonic (MAP) distributions collaboration
 - Monte Carlo approach using a neural network
- Pion results:
 - Khalek, et. al., arXiv:2204.10331
 - NNLO fit to SIA and SIDIS data
 - For SIDIS, use NNPDF3.1 for the PDF contribution
 - Ball, et. al. Eur.Phys.J.C 77 (2017)

MAP FFs

- Kaon results:
 - Khalek, et. al., arXiv:2204.10331
 - NNLO fit to SIA and SIDIS data
 - For SIDIS, use NNPDF3.1 for the PDF contribution
 - Ball, et. al. Eur.Phys.J.C 77 (2017)

Summary and Outlook

- Summary:
 - Most recent JAM results for FFs:
 - Highlighted FF results from DSS and the NNPDF and MAP collaborations
- Outlook: \bullet
 - Working towards fitting collinear and transverse momentum dependent functions simultaneously.

Simultaneous fit of PDFs and pion, kaon, and unidentified hadron FFs