Detecting Supernova Neutrinos

Kate Scholberg, Duke University CIPANP 2022 September 3, 2022

Neutrinos from core-collapse supernovae

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's)

Mostly v-vbar pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall $\Delta t \sim 10$'s of seconds

Fluxes as a function of time and energy

Neutrinos per cm² per bin (per ms per 0.5 MeV)

Huedepohl et al. model

Another example of a model

black hole formation!

Model by L. Huedepohl

	Electrons		
	Elastic scattering		
Charged	$\nu + e^- \to \nu + e^-$		
current			
Neutral current	v e		
	Useful for pointing		

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
Charged	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \rightarrow e^+ + n$ γ	
current		e ⁺ γ	
	-	n _ \	
	e⁻	Elastic scattering	
Neutral current	V	ν ρ	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	[[] √ _e ► ▼ e ⁻	γ e⁺γ ν _e γ	Γ _{v_e} , γ • e ^{+/-} Various possible
Neutral current	ve vv Useful for pointing	Elastic scattering v v v v v v v v v v v v v v v v v v	$\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A$

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[-] ••••••••••••••••••••••••••••••••	γ e⁺γ ν _e γ	r_{v_e} $r_{e^{+/-}}$ Various possible ciecta and
Neutral current	ve	Elastic scattering P vp very low energy	$\nu + A \rightarrow \nu + A^*$ $\nu \dots \rightarrow \nu + A^*$
	for pointing	TECOIIS	$\nu + A \rightarrow \nu + A$ elastic (CEvNS)

IBD (electron antineutrinos) dominates for current detectors

Supernova neutrino detector types

Water Cherenkov detectors

http://snews.bnl.gov/snmovie.html

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \to e^+ + n \quad \blacksquare$$

detection of neutron tags event as *electron antineutrino*

especially useful for diffuse SN signal (which has low signal/bg)

 also useful for disentangling flavor content of a burst (improves pointing, and physics extraction)

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

 $n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma \qquad \sum E_{\gamma} = 8 MeV$

SK-Gd is running with 0.03% Gd (13.2 tons of $Gd_2(SO_4)_3*8H_2O$)

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube, KM3NeT)

Nominally multi-GeV energy threshold... but, may see burst of low energy (anti-) v_e 's as coincident increase in single PMT count rate

Map overall time structure of burst by tracking the single-PMT hit glow

Scintillation detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova electron antineutrinos, with good energy resolution

$$\bar{\nu}_e + p \to e^+ + n$$

Many examples worldwide of current and future detectors

Liquid argon time projection chambers

ICARUS (Italy→USA) 0.6 kton

MicroBooNE (USA) 0.2 kton

SBND

Deep Underground Neutrino Experiment/ Long Baseline Neutrino Facility

next big US-based international particle physics project

- new 1.2 MW beam, Fermilab to SD
- 40-kton fiducial liquid argon TPC far detector
- Also proton decay, supernova, atmospheric neutrino physics ...

SNB event topologies in argon TPC

In LAr neutronization burst gets substantially suppressed with flavor transitions

Simple MSW assumption (assume OK at early times)

NMO:
IMO:

$$F_{\nu_e} = F_{\nu_x}^0$$

 $F_{\nu_e} = \sin^2 \theta_{12} F_{\nu_e}^0 + \cos^2 \theta_{12} F_{\nu_x}^0$

(a mass ordering signature!)

Dark matter detectors as neutrino observatories

Plot from Snowmass CF01 Image: J. Link *Science* Perspectives Once nuclear recoil detectors get sensitive enough, they are blinded by natural neutrinos

Interesting things may eventually emerge from the fog...

Search for CEvNS from **solar neutrinos** with the XENON-1T experiment

Limits only so far ... but eventually we'll see the glare

Supernova burst detection in large DM detectors

DARWIN

Example: dual-phase xenon time projection chambers

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

Also: DarkSide-20K, ARGO, RES-NOvA,...

"CEvNS Glow" in large, high-threshold neutrino detectors

Back-of-the-envelope: CEvNS signal vs Inelastic (CC/NC) signal:

e.g., $v_x + A \rightarrow v_x + A$ vs $v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ in argon, or IBD in scint

~10² more CEvNS events per target wrt CC

~10⁻³ less energy deposited per event for CEvNS wrt CC

- ~ 6 due to sensitivity to all flavors
- ~0.001-0.2 quenching factor (photons wrt e/y energy deposit) for nuclear recoil wrt CC

Total CEvNS photons are ~few-10% of CC-generated photons, but, diffused over the burst rather than in individual event spikes Issue is whether they exceed Sqrt[background] (and triggering may be challengin!)

For DUNE: 40 kt LAr,

~24,000 photons/MeV TPC + photon detectors

Most pernicious issue for CEvNS glow: ³⁹Ar β decays

(dominant radiological)

- 1 Bq/kg
- 260-yr half-life
- in principle can be mitigated w/underground argon (but 40 kton of it a challenge...)

J. Kostensalo et al. (2017) arXiv:1705.05726

CEvNS Glow Photons in LAr: calculation by A. Major, Duke

Detected photons in simplified detector with ³⁹Ar x 0.001

information in time, detected photon multiplicity spectrum

Approximate features matched by G4 sim of DUNE low-bg module

Figure 6: Figures from Carmelo Ortiz, DUNE low energy physics working group meeting,https://indico.fnal.gov/event/50302/ Carmelo Ortiz, Duke

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
ΝΟνΑ	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	(Running)
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	266	110,000	Future
JUNO	Scintillator	China	20	6000	Future
IceCube Gen-2	Long string	South pole			
KM3Net	Long string	Mediterranean			

plus reactor experiments, DM experiments...

Extragalactic

Future Large Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan JUNO 20 kton scintillator (hydrocarbon) China **DUNE** 40 kton argon USA

Hyper-K /JUNO are primarily sensitive to nuebar

$$\bar{\nu}_e + p \to e^+ + n$$

• DUNE is primarily sensitive to **nue**

$$\nu_e + {}^{40}\text{Ar} \to e^- + {}^{40}\text{K}^*$$

extreme complementarity

What we want to measure

Neutrino fluxes vs E, t

What we *want* to measure

Cooling

Neutrino fluxes vs E, t

Accretion

Neutronization

What we can measure

Event rates in different interaction channels vs E, t (with imperfect tagging & resolution)

Event rates vs E, t

Neutrino fluxes vs E, t Dominant channels

Subdominant channels are in the mix too, and not always easily taggable... may be hard to disentangle!

Multimessenger signals from core collapse

K. Nakamura et al., MNRAS 2016

If we see a neutrino burst... where's the supernova??

We're racing the shock!

May have less than a half hour, or even just minutes

Matthew D. Kistler, W. C. Haxton, and Hasan Yüksel. Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout. ApJ, 778:81, 2013, arXiv:1211.6770.

The Supernova Early Warning System 1.0

recently completed Daya Bay

Nature Reviews

IceCube

Simple 10-sec coincidence \rightarrow email alert + socket connection +GCN Running in automated mode since 2005 (no nearby CCSNe...)

snews.bnl.gov

+KM3NeT, SNO+ + NOvA, XENON

Current effort: upgrade to SNEWS 2.0

- improved latency
- neutrino-based pointing, including triangulation
- "fire drills"
- presupernova

snews2.org

Neutrino Pointing Approaches

Triangulation from timing

JUNO+DUNE+HK

N. Linzer, KS: arXiv:1909/03151

Lower quality, but can probably get very low latency, with subsequent improvements

By Joshua Queen

Take-Away Messages

Core-collapse neutrinos

 ~10 second prompt burst of all flavors, few tens of MeV

Current & near future detectors

- ~Galactic sensitivity (SK reaches barely to Andromeda)
 - can get some pointing from neutrinos
 - SNEWS 1.0 network is waiting,
 - SNEWS 2.0 in near future

Long term future

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr!)
- multimessenger prospects

catching rain water in many different sized buckets in a big field and a dancing person

in a raincoat catching rain in a cur

We want to catch them all!