Precision Measurement of the Neutron Asymmetry  $A_1^n$  at Large Bjorken x at 12 GeV JLab

Mingyu Chen University of Virginia September 01, 2022

### Outline:

- 1.  $A_{1^n}$  at High  $x_{Bj}$  Region
- 2. Experimental Setup and Status
- 3. Polarized <sup>3</sup>He Target Performance
- 4. Asymmetry Results
- 5. Summary

On Behalf of the E12-06-110 Collaboration





# Longitudinal Virtual Photon Asymmetry A<sub>1</sub>

- $Q^2 = 4$ -momentum of virtual photon squared
- v = Energy transfer
- $\theta$ = Scattering angle
- $x = \frac{Q^2}{2 M v}$  = Fraction of nucleon momentum carried by the struck quark





$$A_1 = \frac{1}{(E+E')D'} \left[ \left( E - E' \cos \theta \right) A_{\parallel} - \frac{E' \sin \theta}{\cos \phi} A_{\perp} \right]$$

$$=\frac{\sigma_{\downarrow\uparrow}-\sigma_{\uparrow\uparrow}}{\sigma_{\downarrow\uparrow}+\sigma_{\uparrow\uparrow}}$$

$$A_{\perp} = \frac{\sigma_{\downarrow \rightarrow} - \sigma_{\uparrow \rightarrow}}{\sigma_{\downarrow \rightarrow} + \sigma_{\uparrow \rightarrow}}$$

 $A_{\parallel}$ 

$$D' = \frac{(1 - \epsilon)(2 - y)}{y[1 + \epsilon R]}$$

$$\begin{array}{c|c}
\vec{k} & \vec{k'} \\
\vec{k} & \theta \\
\vec{s} & \theta \\
\vec{s} & \theta \\
\end{array}$$

 Angular kinematics for polarized electron scattering

Page:2

### 09/01/2022

# Goals for A<sub>1</sub><sup>n</sup> Experiment

- Precisely measure the neutron spin asymmetry  $A_1^n$  in the far valence domain (0.61<x<0.77).
- Explore the  $Q^2$  dependence of  $A_{1^n}$  with large x value.
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function (PDF) ratios  $\Delta u/u$  ( $\Delta d/d$ ) for large x region.
- Give more insights on understanding the spin structure of nucleon.

|                | $\frac{F_2^n}{F_2^p}$ | $\frac{d}{u}$ | $\frac{\Delta d}{\Delta u}$ | $\frac{\Delta u}{u}$ | $\frac{\Delta d}{d}$ | $A_1^n$ | $A_1^p$       |
|----------------|-----------------------|---------------|-----------------------------|----------------------|----------------------|---------|---------------|
| DSE-1          | 0.49                  | 0.28          | -0.11                       | 0.65                 | -0.26                | 0.17    | 0.59          |
| DSE-2          | 0.41                  | 0.18          | -0.07                       | 0.88                 | -0.33                | 0.34    | 0.88          |
| $0^{+}_{[ud]}$ | $\frac{1}{4}$         | 0             | 0                           | 1                    | 0                    | 1       | 1             |
| NJL            | 0.43                  | 0.20          | -0.06                       | 0.80                 | -0.25                | 0.35    | 0.77          |
| SU(6)          | $\frac{2}{3}$         | $\frac{1}{2}$ | $-\frac{1}{4}$              | $\frac{2}{3}$        | $-\frac{1}{3}$       | 0       | $\frac{5}{9}$ |
| CQM            | $\frac{1}{4}$         | 0             | 0                           | 1                    | $-\frac{1}{3}$       | 1       | 1             |
| pQCD           | $\frac{3}{7}$         | $\frac{1}{5}$ | $\frac{1}{5}$               | 1                    | 1                    | 1       | 1             |

Table 1: Predictions for the x = 1 value of various models. From Craig D. Roberts et al 10.1016/j.physletb.2013.09.038



**Polarized** and sea quark PDFs for  $Q^2 = 10 \text{ GeV}^2$  from the NNPDFpol1.1 parameterization

See Nocera ER, et al. Nucl. Phys. B887:276 (2014).

### 09/01/2022

### **CIPANP 2022**

## **Previous Results for A<sup>n</sup> and PDF**



# **Experimental Setup**

### Electron Beam:

- E<sub>beam</sub>=2.17 GeV (1-pass commission)
- E<sub>beam</sub>=10.38 GeV (5-pass DIS production)<sup>--</sup>
- Beam polarization: 85%
   (<3% uncertainty by Moller Polarimeter)</li>
- Circular beam raster with 2.0-2.5mm radius
- < 50 ppm charge asymmetry (average over ~ 1–2 hr run)

### Polarized <sup>3</sup>He target:

- <sup>3</sup>He production cell (40cm)
- 55–60% polarization without beam
- Reached over 50% polarization with 30 uA beam current

(doubles performance compare to 6 GeV era)

About 3% uncertainty for polarimetry

### Spectrometers:

- High Momentum Spectrometer (HMS)
- Super HMS (SHMS)

|      | Kine         | $me \mid S$ |               | Spec  | $E_l$     | 5       | $E_p$      | $\theta$ be |      | eam time  |      |     |  |      |
|------|--------------|-------------|---------------|-------|-----------|---------|------------|-------------|------|-----------|------|-----|--|------|
|      |              |             |               |       | Ge        | V       | GeV        | (0)         |      | (hours)   |      |     |  |      |
|      | $\Delta(123$ | 32)         | ) SHMS        |       | 2.17      |         | -1.79736   | 8.5         |      | 4.0       |      |     |  |      |
|      | Elast        | Elastic     |               | HMS   | 2.17      |         | -2.12860   | 8.5         |      | 8.0       |      |     |  |      |
| Kine | Spec         | $  E_l$     | 5             | $E_p$ | $\theta$  | $e^{-}$ | production | $e^+$ prod. |      | Tot. Time |      |     |  |      |
|      |              | Ge          | V             | GeV   | (0)       | (hours) |            | (hours)     |      | (hours)   |      |     |  |      |
| DIS  |              |             |               |       |           |         |            |             |      |           |      |     |  |      |
| 3    | HMS          | 10.38       |               | 10.38 |           | 10.38   |            | 2.90        | 30.0 |           | 88.0 | 0.0 |  | 88.0 |
| 4    | HMS          | 10.38       |               | 3.50  | 3.50 30.0 |         | 511.0      | 0.0         |      | 511.0     |      |     |  |      |
| В    | SHMS         | 10.3        | .38 3.40      |       | 30.0      | 511.0   |            | 4.0         |      | 515.0     |      |     |  |      |
| С    | SHMS         | 10.3        | 38   2.60   3 |       | 30.0      |         | 88.0       | 4.0         |      | 92.0      |      |     |  |      |
|      |              |             | - 17          |       |           |         |            |             |      |           |      |     |  |      |







### 09/01/2022

### A<sub>1</sub><sup>n</sup> production run begins on Jan 12<sup>th</sup>, 2020 and ended on March 13<sup>th</sup>, 2020.

## Polarimetry for <sup>3</sup>He in Target Cell



### 1. Adiabatic Fast Passage Nuclear Magnetic Resonance (AFP-NMR)

- Magnetic Resonance of <sup>3</sup>He Nucleus
- Sweep the holding field under AFP condition to flip the Nucleon spin direction back and forth.
- Relative measurement, calibrate with water NMR or EPR.

### 2. Pulse NMR

- Use resonance RF pulse at <sup>3</sup>He Larmor frequency to tilts the Nucleon spin to a certain angle.
- Relative measurement, calibrate with AFP-NMR.
- Implemented for the first time on polarized <sup>3</sup>He target.

# 3. Electron Paramagnetic Resonance (EPR)

- Magnetic resonance of the alkali atoms
- Resonance shifted due to polarized <sup>3</sup>He, get the resonance frequency difference by flipping the <sup>3</sup>He polarization direction.
- Get <sup>3</sup>He polarization from resonance frequency difference. Absolute measurement. *Page:6*

09/01/2022

### Production Cell Performance (for targets used in A<sub>1</sub><sup>n</sup> experiment)

- A<sub>1</sub><sup>n</sup> Experiment Target Performance
- Two production cells used
- Polarization: maximum reach 60+%, 55% in beam



# A<sub>para</sub>: <sup>3</sup>He Elastic Asymmetries

By definition: N<sup>+</sup> should describe the # of incident e<sup>-</sup> whose spin is **anti-**|| to the <sup>3</sup>He target spin

 $A_{\parallel} = \frac{1}{\sigma^{\downarrow\uparrow\uparrow}}$ 



SHMS Elastic Runs

### 09/01/2022

**CIPANP 2022** 

Credit to Melanie Rehfuss (Tample)



Credit to Melanie Rehfuss (Tample)

09/01/2022

**CIPANP 2022** 

Page:9

 $A_{perp}$ : <sup>3</sup>He Δ(1232) Asymmetries

By definition:  $N^+$  should describe the # of incident  $e^-$  whose spin is **anti-**|| to the **beam direction**, and the scattered  $e^-$  being detected on the

to the **beam direction**, and the scattered  $e^-$  being detected on the **same side of the beam** as that to which the <sup>3</sup>He spins are pointing: (beam left  $\rightarrow$  SHMS!)



 $= (A_{phys} * f_{N2})_{comb} / (f_{N2})_{comb}$ Aphys<sup>)</sup>comb

09/01/2022

**CIPANP 2022** 



 $(A_{phys} * f_{N2})_i = \frac{A_{corr}}{P_h P_t}$ 









### Note:

- Subscript "all" for no W cut applied
- Subscript "DIS" for W>2 GeV cut applied

09/01/2022

**CIPANP 2022** 





Subscript "DIS" for W>2 GeV cut applied

09/01/2022

**CIPANP 2022** 

## Summary

- The A<sub>1</sub><sup>n</sup> experiment (E12-06-110) is a flag-ship, high impact experiment which will give more insights on understanding the spin structure of nucleon.
- For the first time, install the upgraded polarized <sup>3</sup>He target for 12 GeV era in JLab Hall C. The target reached the expected performance with over 50% <sup>3</sup>He polarization in 30 uA electron beam.
- After combining with precision proton data (CLAS12), the high-precision neutron data will allow us to extract polarized to unpolarized parton distribution function (PDF) ratios Δu/u (Δd/d) for large x region.





## **Acknowledgments**

**CIPANP 2022** 

### People

D. Androic, W. Armstrong, T. Averett, X. Bai, J. Bane, S. Barcus, J. Benesch, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, G. Cates, J-P. Chen, J. Chen, M. Chen, C. Cotton, M-M. Dalton, A. Deur, B. Dhital, B. Duran, S.C. Dusa, I. Fernando, E. Fuchey, B. Gamage, H. Gao, D. Gaskell, T.N. Gautam, N. Gauthier, C.A. Gayoso, O. Hansen, F. Hauenstein, W. Henry, G. Huber, C. Jantzi, S. Jia, K. Jin, M. Jones, S. Joosten, A. Karki, B. Karki, S. Katugampola, S. Kay, C. Keppel, E. King, P. King, W. Korsch, V. Kumar, R. Li, S. Li, W. Li, D. Mack, S. Malace, P. Markowitz, J. Matter, M. McCaughan, Z-E. Meziani, R. Michaels, A. Mkrtchyan, H. Mkrtchyan, C. Morean, V. Nelyubin, G. Niculescu, M. Niculescu, M. Nycz, C. Peng, S. Premathilake, A. Puckett, A. Rathnayake, M. Rehfuss, P. Reimer, G. Riley, Y. Roblin, J. Roche, M. Roy, M. Satnik, B. Sawatzky, S. Seeds, S. Sirca, G. Smith, N. Sparveris, H. Szumila-Vance, A. Tadepalli, V. Tadevosyan, Y. Tian, A. Usman, H. Voskanyan, S. Wood, B. Yale, C. Yero, A. Yoon, J. Zhang, Z. Zhao, X. Zheng, J. Zhou



**PhD Candidates** 

#### Spokespeople



### Institutions

A.I. Alikhanian National Science Laboratory; Argonne National Laboratory; Artem Alikhanian National Laboratory (AANL).; Christopher Newport University; Duke University; Florida International University; Hampton University ; James Madison University ; Jefferson Lab; Kent State University; Mississippi State University; Ohio University; Old Dominion University; Rutgers University; Syracuse University; Temple University; The College of William and Mary; Univ. of Ljubljana; University of Connecticut; University of Kentucky; University of Kentucky; University of New Hampshire; University of Regina; University of Tennessee; University of Virginia; University of Virginia; University of Zagreb





09/01/2022

# **Backup Slides**

09/01/2022

**CIPANP 2022** 

# Introduction to <sup>3</sup>He Polarization



- Polarized target for study the spin structure of nucleon.
- Free neutron mean lifetime: 880.2 s.
- The unpaired neutron carries the majority of the <sup>3</sup>He nucleus polarization.
- Polarized <sup>3</sup>He is a good effective polarized neutron target.

# Spin Exchange Optical Pumping



1. Optical Pumping







### 09/01/2022

### **CIPANP 2022**

## Polarized <sup>3</sup>He Targets Performance Evolution

FOM = (Target Polarization)<sup>2</sup> × Beam Current



09/01/2022



12 GeV era Target Cell: ٠

Target chamber length: 40 cm

Beam Current: 30uA

Reached over 50% in beam polarization

Luminosity: ~ 2.2x10<sup>36</sup> cm<sup>-2</sup>S<sup>-1</sup>

Convection Cell (instead of diffusion cells used in the 6 GeV era)

> $\rightarrow$  convection allows for more uniform polarization between target and pumping chamber

### Sign Correction (based on Melanie's Notes)

In analysis:  $A_{\parallel}$ 

$$_{,\perp} = \frac{(N^+ - N^-)}{(N^+ + N^-)}$$

#### e<sup>-</sup> spin direction:

| Period                                               | IHWP = IN                                                                                                                         | IHWP = OUT                                                                                                       | <sup>3</sup> He spin direction     |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|
| l-pass<br>(Dec. 2019)<br>(elastic + delta)           | UPSTREAM<br>$(\vec{e}^{-} \text{ anti-} \  {}^{3}\overrightarrow{He})$<br>$(\vec{e}^{-} \text{ anti-} \  \text{ beam direction})$ | DOWNSTREAM<br>$(\vec{e}^- \parallel ^3 \overline{He})$<br>$(\vec{e}^- \parallel$ beam direction)                 | 180°: DOWNSTREAM<br>90°: BEAM LEFT |
| 5-pass<br>(DIS)<br>(thru SHMS<br>10354,<br>HMS 3162) | DOWNSTREAM<br>$(\vec{e}^{-} \parallel {}^{3}\vec{He})$<br>$(\vec{e}^{-} \parallel$ beam direction)                                | UPSTREAM<br>$(\vec{e}^- \text{ anti-} \  \ ^3\vec{He})$<br>$(\vec{e}^- \text{ anti-} \  \text{ beam direction})$ | 180°:DOWNSTREAM<br>90°: BEAM LEFT  |
| 5-pass<br>(DIS)<br>(SHMS 10355+,<br>HMS 3163+)       | UPSTREAM<br>( $\vec{e}^{-}$ anti- $\  {}^{3}\vec{He}$ )<br>( $\vec{e}^{-}$ anti- $\ $ beam direction)                             | DOWNSTREAM<br>$(\vec{e}^- \parallel \vec{3He})$<br>$(\vec{e}^- \parallel \text{beam direction})$                 | 180°: DOWNSTREAM<br>90°: BEAM LEFT |
|                                                      |                                                                                                                                   |                                                                                                                  |                                    |

### $A_1^n$ Running

#### If the above definition is used for the asymmetry, then for DIS w/ <sup>3</sup>He @ 180 deg:

- before the Wien Flip on 2/17/20, IHWP = IN runs get a -1 correction •
- after the Wien Flip on 2/17/20, IHWP = OUT runs get a -1 correction ٠

#### Electron Asymmetries 1.12

In an experiment it is usually difficult to align the virtual photon spin direction along the target spin direction, while keeping some flexibility in other kinematic variables. Alternatively the incident electron spin is aligned parallel (anti-parallel) or perpendicular (anti-perpendicular) to the target spin. The virtual photon asymmetries can be related to the measured lepton asymmetries through polarization and kinematic factors. For a target polarized parallel to the beam direction, the experimental longitudinal electron asymmetry is given by [12]  $N^+ \rightarrow \vec{e}^-$  anti-II  ${}^3H\vec{e}$ 

$$A_{\parallel} \equiv \frac{\sigma_{\downarrow\uparrow\uparrow} - \sigma_{\uparrow\uparrow\uparrow}}{\sigma_{\downarrow\uparrow\uparrow} + \sigma_{\uparrow\uparrow\uparrow}} = \frac{1 - \epsilon}{(1 - \epsilon R)W_1} \Big[ M(E + E' \cos \theta)G_1 - Q^2G_2 \Big], \quad (1.45)$$

where  $\sigma_{\downarrow 0}(\sigma_{\uparrow 0})$  is the cross section for scattering off a longitudinally polarized target, with incident electron spin anti-parallel (parallel) to the target spin. Similarly the transverse electron asymmetry is defined for a target polarized perpendicular to the beam direction as [12]  $N^+ \rightarrow \vec{e}^-$  anti-|| beam direction,  ${}^3H\vec{e}$  pointing toward SHMS

$$A_{\perp} \equiv \frac{\sigma_{\downarrow\Rightarrow} - \sigma_{\uparrow\Rightarrow}}{\sigma_{\downarrow\Rightarrow} + \sigma_{\uparrow\Rightarrow}} = \frac{(1 - \epsilon)E'}{(1 - \epsilon R)W_1} [MG_1 + 2EG_2] \cos\theta$$
, (1.46)

where  $\sigma_{\perp\Rightarrow}(\sigma_{\uparrow\Rightarrow})$  is the cross section for scattering off a transversely polarized target, with incident electron spin anti-parallel (parallel) to the beam direction, and the scattered electrons being detected on the same side of the beam as that to which the target spin is pointing. The electron asymmetries can be given in terms of  $A_1$  and

#### Xiaochao Zheng Thesis, pg. 34

 $\vec{e}^-$ : electron spin

 ${}^{3}\overrightarrow{He}$ : target spin

#### If the above definition is used for the asymmetry, then for DIS w/ <sup>3</sup>He @ 90 deg:

- before the Wien Flip on 2/17/20, IHWP = IN runs get a -1 correction on SHMS, IHWP = OUT get a -1 on HMS .
- after the Wien Flip on 2/17/20, IHWP = OUT runs get a -1 correction on SHMS, IHWP = IN get a -1 on HMS

### **CIPANP 2022**

### Sign Correction (based on Melanie's Notes)

# Target Field/Spin Direction

| Target Holding Field Direction | <sup>3</sup> He Spin Direction |
|--------------------------------|--------------------------------|
| +X Beam RIGHT (90°)            | Beam LEFT                      |
| -X Beam LEFT (270°)            | Beam RIGHT                     |
| +Z DOWNSTREAM (0°)             | UPSTREAM                       |
| -Z UPSTREAM (180°)             | DOWNSTREAM                     |

The target was always pumped in the low-energy state (<sup>3</sup>He spin is **opposite of the holding field**) during data-taking

$$\begin{aligned} & \text{Get Asymmetry} \\ \text{o For each run i:} \quad A_{raw} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \end{aligned} \qquad A_{raw, corr} = \frac{\frac{N^{+}}{Q^{+} \eta_{LT}^{+}} - \frac{N^{-}}{Q^{-} \eta_{LT}^{-}}}{\frac{N^{+}}{Q^{+} \eta_{LT}^{+}} + \frac{N^{-}}{Q^{-} \eta_{LT}^{-}}} \end{aligned} \\ & (A_{phys} * f_{N2})_{i} = \frac{A_{corr}}{P_{b} P_{t}} \qquad \Delta A_{raw, corr} = 2Q^{+}Q^{-} \eta_{LT}^{+} \eta_{LT}^{-} \sqrt{\frac{N^{+} N^{-2} + N^{-} N^{+2}}{(N^{+}Q^{-} \eta_{LT}^{-} + N^{-}Q^{+} \eta_{LT}^{+})^{4}}} \end{aligned}$$

$$\begin{aligned} \text{Where } A_{corr} = sign * (A_{raw, corr}) \text{ is corrected asymmetry } \Delta A_{corr} = \Delta A_{raw, corr} \\ \Delta (A_{phys} * f_{N2})_{i} = (A_{phys} * f_{N2})_{i} * \sqrt{(\frac{\Delta A_{corr}}{A_{corr}})^{2} + (\frac{\Delta P_{b}}{P_{b}})^{2} + (\frac{\Delta P_{t}}{P_{t}})^{2}} \end{aligned}$$

• For combined asymmetry:

$$(A_{phys} * f_{N2})_{comb} = \frac{\sum \frac{(A_{phys} * f_{N2})_i}{\Delta (A_{phys} * f_{N2})_i^2}}{\sum \frac{1}{\Delta (A_{phys} * f_{N2})_i^2}} \qquad \Delta (A_{phys} * f_{N2})_{comb} = \sqrt{\frac{1}{\sum \frac{1}{\Delta (A_{phys} * f_{N2})_i^2}}}$$

#### 09/01/2022

**CIPANP 2022** 

## Get Asymmetry Notes

1) For online analysis, use

$$\frac{\Delta P_b}{P_b} = 0.03 \quad \frac{\Delta P_t}{P_t} = 0.04$$

2) In order to avoid dividing by zero in the calculation:

• If 
$$N^+ + N^- = 0$$
 or  $\Delta A_{raw,corr} = 0$  set:  

$$\frac{(A_{phys} * f_{N2})_i}{\Delta (A_{phys} * f_{N2})_i^2} = 0$$

$$\frac{1}{\Delta (A_{phys} * f_{N2})_i^2} = 0$$
• If  $A_{corr} = 0$ , then set  $\Delta (A_{phys} * f_{N2})_i = 0$   
• If  $\sum \frac{1}{\Delta (A_{phys} * f_{N2})_i^2} = 0$ , then log:  $(A_{phys} * f_{N2})_{comb} = 0$   
(will not plot these values)

09/01/2022

### Cuts for Replayed Root Files (for HMS and SHMS)

• HMS:

Acceptance Cuts:

- -8 < H.gtr.dp < 8
- -0.06 < H.gtr.th < 0.06
- -0.1 < H.gtr.ph < 0.1
- -15 < H.react.z < 15

PID cuts:

- 0.8 < H.cal.etracknorm< 2.0
- 1. < H.cer.npeSum

• SHMS:

Acceptance Cuts:

- -10 < P.gtr.dp < 22
- -0.07 < P.gtr.th < 0.07
- -0.05 < P.gtr.ph < 0.05
- -15 < P.react.z < 15

PID cuts:

- 0.8 < P.cal.etracknorm< 2
- 2. < P.ngcer.npeSum

- Current cuts based on the stats. of T:ibcm1 : ibcm1>3 uA
- If the mean value of ibcm1 is less than 3.5 uA, skip the run for average current too low.

### **CIPANP 2022**

$$A_{phys}^{3He} (A_{phys})_{comb} = (A_{phys} * f_{N2})_{comb} / (f_{N2})_{comb}$$
  
(with W>2 GeV cut; combine two spec)  
$$\Delta (A_{phys})_{comb} = (A_{phys})_{comb} * \sqrt{\left(\frac{\Delta (A_{phys} * f_{N2})_{comb}}{(A_{phys} * f_{N2})_{comb}}\right)^2 + \left(\frac{\Delta (f_{N2})_{comb}}{(f_{N2})_{comb}}\right)^2}$$



09/01/2022

**CIPANP 2022** 



09/01/2022

**CIPANP 2022** 

Extracting 
$$g_1/F_1 \& A_1, A_2$$

$$\frac{g_1^{^{3}He}}{F_1^{^{3}He}} = \left(\frac{1}{d'}\right) \left(A_{\parallel} + \tan\left(\frac{\theta}{2}\right)A_{\perp}\right)$$
$$\frac{g_2^{^{3}He}}{F_1^{^{3}He}} = \left(\frac{y}{2d'}\right) \left(-A_{\parallel} + \left(\frac{E - E'\cos(\theta)}{E'\sin(\theta)}\right)A_{\parallel}\right)$$
$$A_1 = \frac{1}{D(1+\eta\xi)}A_{\parallel} - \frac{\eta}{d(1+\eta\xi)}A_{\perp}$$
$$A_2 = \frac{\xi}{D(1+\eta\xi)}A_{\parallel} + \frac{1}{d(1+\eta\xi)}A_{\perp}$$

 $A_{\parallel} \& A_{\perp}$  are the electron **physics** double-spin asymmetries

Electron Beam Energy E = 10.38 GeV (fixed)

$$D = \frac{E - \epsilon E'}{E(1 + \epsilon R)}$$

$$\epsilon = \frac{1}{1 + 2\left(1 + \frac{\nu^2}{Q^2}\right)tan^2(\frac{\theta}{2})}$$

$$\eta = \frac{\epsilon\sqrt{Q^2}}{E - E'\epsilon} \quad \xi = \eta(1 + \epsilon)/2\epsilon$$

$$\nu = E - E' \qquad y = \nu/E$$

$$d = D\sqrt{\frac{2\epsilon}{1 + \epsilon}} \qquad R(x, Q^2) = \frac{\sigma_L}{\sigma_T}(1998)$$

$$d' = \frac{(1 - \epsilon)(2 - y)}{y(1 + \epsilon R)}$$

#### 09/01/2022

**CIPANP 2022** 

### Nuclear Corrections & Quark Flavor Decomposition

•  $A_1^n$  is ultimately extracted from  $A_1^{^{3}He}$  as

$$A_{1}^{n} = \frac{F_{2}^{^{3}He} \left[ A_{1}^{^{3}He} - 2\left(\frac{F_{2}^{p}}{F_{2}^{^{3}He}}\right) P_{p} A_{1}^{p} \left(1 - \frac{0.014}{2P_{p}}\right) \right]}{P_{n} F_{2}^{n} (1 + \frac{0.056}{P_{n}})}$$

where  $P_n = 0.86^{+0.036}_{-0.02}$  and  $P_p = -0.028^{+0.009}_{-0.004}$  are the effective nucleon polarizations of the neutron and proton inside <sup>3</sup>He

• Combining neutron  $g_1/F_1$  data with measurements on the proton allows a flavor decomposition to separate the polarized-to-unpolarized-PDF ratios for up and down quarks:

 $g_1^p/F_1^p = x^{0.813}(1.231 - 0.413x)(1 + \frac{0.030}{Q^2})$ 

09/01/2022

**CIPANP 2022** 

## A<sub>1</sub><sup>p</sup> Fit from World Data



• Fit for E155, E143 at SLAC and EMC, SMC at CERN:

$$A_1^p = x^{0.771} (1.126 - 0.189x) (1 - \frac{0.09}{Q^2})$$

09/01/2022

**CIPANP 2022** 

## **Expected Results**



#### 09/01/2022

**CIPANP 2022** 

# (for targets used in d<sub>2</sub><sup>n</sup> experiment)

- d<sub>2</sub><sup>n</sup> Experiment Target Performance
- Three production cells used
- Polarization: ~45% in beam



# N<sub>2</sub> Dilution Study

 $f_{TC} = V_{Tot} * (V_{TC} + V_{PC} \frac{T_{TC}}{T_{PC}} + V_{TT} \frac{T_{TC}}{T_{TT}})^{-1}$ 

| Date  | Run<br>start<br>time                                 | Run<br>end<br>time | Run<br>num | Field<br>Direct<br>n (dec | io Spec<br>J) | Kine  | e                    | Spec<br>angle<br>(deg) | E <sub>p</sub><br>(GeV) | Trigger       | Target<br>Type | t               | Replayed<br>Event # | Beam<br>Current<br>(uA) | N2<br>Pressure<br>TC (amg) | Comment         |
|-------|------------------------------------------------------|--------------------|------------|---------------------------|---------------|-------|----------------------|------------------------|-------------------------|---------------|----------------|-----------------|---------------------|-------------------------|----------------------------|-----------------|
| 02/13 | 10:06                                                | 10:38              | 3085       | 90                        | HMS           | Kine- | -4                   | 30                     | -3.5                    | 3/4           | Ref-N2         | 2               | All; -1             | 30                      | 8.690<br>±0.006            | Cell Will       |
| 03/02 | 15:08                                                | 16:09              | 3406       | 90                        | HMS           | Kine- | -4                   | 30                     | -3.5                    | 3/4           | Pol-3H         | е               | All; -1             | 30                      | 0.1460<br>±0.00147         | Cell Bigbrother |
| 01/20 | 14:10                                                | 16:00              | 2771       | 180                       | HMS           | Kine- | 4                    | 30                     | -3.5                    | 3/4           | Pol-3H         | е               | All; -1             | 30                      | 0.163<br>±0.00159          | Cell Dutch      |
| 02/14 | 04:35                                                | 04:59              | 3105       | 90                        | HMS           | Kine- | 3                    | 30                     | -2.9                    | 3/4           | Ref-N2         | 2               | All; -1             | 30                      | 8.690<br>±0.006            | Cell Will       |
| 02/16 | 22:49                                                | 00:07              | 3153       | 180                       | HMS           | Kine- | 3                    | 30                     | -2.9                    | 3/4           | Pol-3H         | е               | All; -1             | 30                      | 0.1460<br>±0.00147         | Cell Bigbrother |
| Cell  | Info:                                                |                    |            |                           |               |       |                      |                        |                         |               |                |                 |                     |                         | 1                          | Average         |
|       |                                                      |                    |            |                           |               |       |                      |                        |                         |               |                | N               | filling Den         | sity                    | Location                   | Temp (°C)       |
| Cel   | Cell Name V <sub>Tot</sub> (mL) V <sub>PC</sub> (mL) |                    | _)         | V <sub>TC</sub> (mL)      |               | L)    | V <sub>TT</sub> (mL) |                        | .) (amg)                |               | Sity           | PC              | 238±2               |                         |                            |                 |
| C     | Outch                                                | 442                | 1.540 ±0.  | 001                       | 297.151 ±(    | ).001 | 111.866±0.           |                        | .001                    | 32.523 ±0     | 0.001          | .001 0.115 ±0   |                     |                         | тс                         | 35±2            |
| Big   | brother                                              | 427                | 7.182 ±0.  | 001                       | 293.82±0.(    | 001   | 100                  | ).759 ±0               | 0.001                   | 32.602 ±0.001 |                | 001 0.110 ±0.00 |                     |                         | TT                         | 38±2            |
|       |                                                      |                    |            |                           |               |       |                      | Ref_N2                 | 37±2                    |               |                |                 |                     |                         |                            |                 |

# N<sub>2</sub> Dilution Study

$$D_{N_{2}} = 1 - \frac{\sum_{N_{2}}(N_{2})}{\sum_{tot}(^{3}He)} \frac{t_{ps}(N_{2})}{t_{ps}(^{3}He)} \frac{Q(^{3}He)}{Q(N_{2})} \frac{t_{LiveTime}(^{3}He)}{t_{LiveTime}(N_{2})} \frac{n_{N_{2}}(^{3}He)}{n_{N_{2}}(N_{2})}$$
$$= 1 - \frac{Yield_{N_{2}}(N_{2})}{Yield_{tot}(^{3}He)} * \frac{n_{N_{2}}(^{3}He)}{n_{N_{2}}(N_{2})}$$

$$t_{LiveTime} = \frac{\Sigma * t_{ps}}{s} \qquad \sigma(t_{LiveTime}) = t_{LiveTime} * \sqrt{\frac{1}{\Sigma} + \frac{1}{s}}$$

- Σ: good event from T(spectrometer) tree with current cut, no pid or acceptance cut
- s: scaler from from TSP(helicity scaler) tree with current cut

$$Yield = \frac{\Sigma * t_{ps}}{Q * t_{LiveTime}} \quad \sigma(Yield) = Yield * \sqrt{\frac{1}{\Sigma} + \frac{\sigma(t_{LiveTime})^2}{t_{LiveTime}^2}}$$

| Run Num  | Cell Name  | Target Type | spec   | Prescale Factor<br>(t <sub>ps</sub> ) | Yield           | N <sub>2</sub> Dilution Factor<br>(D <sub>N2</sub> ) |
|----------|------------|-------------|--------|---------------------------------------|-----------------|------------------------------------------------------|
| Combined | Will       | Ref-N2      | Kine-4 | 1.0                                   | 140201<br>±1331 | 1-(0.097657                                          |
| Combined | Bigbrother | Pol-3He     | Kine-4 | 1.0                                   | 24120<br>±32.93 | ±0.002661)                                           |
| Combined | Dutch      | Pol-3He     | Kine-4 | 1.0                                   | 25795<br>±34.67 | 1-(0.10194<br>±0.001866)                             |
| Combined | Will       | Ref-N2      | Kine-3 | 1.0                                   | 436638<br>±3616 | 1-(0.093793                                          |
| Combined | Bigbrother | Pol-3He     | Kine-3 | 1.0                                   | 78214<br>±111.5 | ±0.001231)                                           |

- Combine yield for all good runs in same kinematics:
- For each run i get Yield, and  $\sigma(Yield)_i$

$$Yield_{comb} = \frac{\sum \frac{Yield_{i}}{\sigma(Yield)_{i}^{2}}}{\sum \frac{1}{\sigma(Yield)_{i}^{2}}}$$



09/01/2022

**CIPANP 2022** 

# N<sub>2</sub> Dilution Study

$$D_{N_{2}} = 1 - \frac{\sum_{N_{2}}(N_{2})}{\sum_{tot}(^{3}He)} \frac{t_{ps}(N_{2})}{t_{ps}(^{3}He)} \frac{Q(^{3}He)}{Q(N_{2})} \frac{t_{LiveTime}(^{3}He)}{t_{LiveTime}(N_{2})} \frac{n_{N_{2}}(^{3}He)}{n_{N_{2}}(N_{2})}$$
$$= 1 - \frac{Yield_{N_{2}}(N_{2})}{Yield_{tot}(^{3}He)} * \frac{n_{N_{2}}(^{3}He)}{n_{N_{2}}(N_{2})}$$

$$t_{LiveTime} = \frac{\Sigma * t_{ps}}{s} \qquad \sigma(t_{LiveTime}) = t_{LiveTime} * \sqrt{\frac{1}{\Sigma} + \frac{1}{s}}$$

- $\Sigma$ : good event from T(spectrometer) tree with current cut, no pid or acceptance cut
- s: scaler from from TSP(helicity scaler) tree with current cut

$$Yield = \frac{\Sigma * t_{ps}}{Q * t_{LiveTime}} \quad \sigma(Yield) = Yield * \sqrt{\frac{1}{\Sigma} + \frac{\sigma(t_{LiveTime})^2}{t_{LiveTime}^2}}$$

| Run Num  | Cell Name  | Target Type | spec   | Prescale Factor<br>(t <sub>ps</sub> ) | Yield            | N <sub>2</sub> Dilution Factor<br>(D <sub>N2</sub> ) |  |
|----------|------------|-------------|--------|---------------------------------------|------------------|------------------------------------------------------|--|
| Combined | Will       | Ref-N2      | Kine-B | 1.0                                   | 179145<br>±1526  | 1-(0.093689                                          |  |
| Combined | Bigbrother | Pol-3He     | Kine-B | 1.0                                   | 32125<br>±39.15  | ±0.001242)                                           |  |
| Combined | Dutch      | Pol-3He     | Kine-B | 1.0                                   | 34474<br>±40.26  | 1-(0.097471<br>±0.001269)                            |  |
| Combined | Will       | Ref-N2      | Kine-C | 1.0                                   | 759784<br>±4692  | 1-(0.092457                                          |  |
| Combined | Bigbrother | Pol-3He     | Kine-C | 1.0                                   | 138064<br>±149.7 | ±0.001098)                                           |  |

- Combine yield for all good runs in same kinematics:
- For each run i get Yield, and  $\sigma(Yield)_i$

$$\text{Tield}_{comb} = \frac{\sum \frac{\text{Yield}_{i}}{\sigma(\text{Yield})_{i}^{2}}}{\sum \frac{1}{\sigma(\text{Yield})_{i}^{2}}}$$

TT 11

$$\sigma(\text{Yield}_{comb}) = \sqrt{\frac{1}{\sum \frac{1}{\sigma(\text{Yield})_i^2}}}$$

#### 09/01/2022

٠

#### **CIPANP 2022**