

The PRad experiment and the Proton Radius Puzzle

Tyler J. Hague September 3, 2022

Lawrence Berkeley National Lab

Table of contents

- 1. The Proton Radius Puzzle
- 2. PRad
 - The Experiment The Data
 - Radius Extraction
- 3. PRad-II
- 4. Other PRad Family Experiments

The Proton Radius Puzzle

Prior to 2010, the proton radius was believed to be 0.88 fm

¹Krauth et al., "The proton radius puzzle". ²Pohl et al., "The size of the proton".

A new μ H spectroscopy measurement² upended this with a measurement of 0.84 fm boasting unprecedented precision.

$A > 5\sigma$ discrepancy!

¹Krauth et al., "The proton radius puzzle". ²Pohl et al., "The size of the proton".

e – p Scattering

- The "proton radius" is defined as a moment of the of the proton electric form factor, G_E^p , and is proportional to the slope of G_E^p as $Q^2 \rightarrow 0$
- Through a Taylor-expansion of G_E^p around $Q^2 = 0$, we find:

$$G_{E}^{p}\left(Q^{2}\right) = 1 - \frac{Q^{2}\left\langle r_{p}^{2}\right\rangle}{6} + \frac{Q^{4}\left\langle r_{p}^{4}\right\rangle}{120} - \dots$$
(1)

• By fitting G_E^p data and extrapolating to 0 Q^2 the proton radius, r_p , can be extracted as $r_p = \sqrt{6\frac{dG_E^p}{dQ^2}}$

Hydrogen Lamb Shift

- The energy difference between excited *S* and *P* states of Hydrogen is directly related to the proton radius
- While it relies on (and is dominated by) radiative effects of the Hydrogen atom, precision measurements and improved calculations leave r_p as the limiting factor
- The increased mass of the muon make $\mu {\rm H}$ even more sensitive to r_p

New Physics?

• Could lepton universality be violated?

Inconsistent Definitions?

 Is the definition of r_p consistent between the two measurement techniques?

Improper Extraction from *e – p* Data?

- Extraction relies on extrapolation
- Poor choice of fit function can bias the extraction

Incorrect Rydberg Constant?

New Physics?

• Could lepton universality be violated?

Inconsistent Definitions?

 Is the definition of r_p consistent between the two measurement techniques?

Improper Extraction from *e – p* Data?

- Extraction relies on extrapolation
- Poor choice of fit function can bias the extraction

Incorrect Rydberg Constant?

New Physics?

• Could lepton universality be violated?

Inconsistent Definitions?

 Is the definition of r_p consistent between the two measurement techniques?

Improper Extraction from e - p Data?

- Extraction relies on extrapolation
- Poor choice of fit function can bias the extraction

Incorrect Rydberg Constant?

New Physics?

• Could lepton universality be violated?

Inconsistent Definitions?

 Is the definition of r_p consistent between the two measurement techniques?

Improper Extraction from *e – p* Data?

- Extraction relies on extrapolation
- Poor choice of fit function can bias the extraction

Incorrect Rydberg Constant?

New Physics?

• Could lepton universality be violated?

Inconsistent Definitions?

 Is the definition of r_p consistent between the two measurement techniques?

Improper Extraction from e - p Data?

- Extraction relies on extrapolation
- Poor choice of fit function can bias the extraction

Incorrect Rydberg Constant?

PRad

- Experiment designed to achieve the most precise proton radius extraction from e p scattering
- Aimed to record the lowest Q^2 achieved in e p scattering (from 2.1×10^{-4} to 6×10^{-2} GeV²)
- Simultaneously measure Møller Scattering to fix the normalization

- Experiment designed to achieve the most precise proton radius extraction from e p scattering
- Aimed to record the lowest Q^2 achieved in e p scattering (from 2.1×10^{-4} to 6×10^{-2} GeV²)
- Simultaneously measure Møller Scattering to fix the normalization

- Experiment designed to achieve the most precise proton radius extraction from e p scattering
- Aimed to record the lowest Q^2 achieved in e p scattering (from 2.1×10^{-4} to 6×10^{-2} GeV²)
- Simultaneously measure Møller Scattering to fix the normalization

Magnet-free setup

- Large area vacuum chamber
- Large acceptance forward hybrid calorimeter (HyCal) to cover entire Q² range in a single setting
- · GEM for neutral particle rejection and tracking
- Window-less gas flow target

- Magnet-free setup
- Large area vacuum chamber
- Large acceptance forward hybrid calorimeter (HyCal) to cover entire Q² range in a single setting
- · GEM for neutral particle rejection and tracking
- Window-less gas flow target

- Magnet-free setup
- Large area vacuum chamber
- Large acceptance forward hybrid calorimeter (HyCal) to cover entire Q² range in a single setting
- · GEM for neutral particle rejection and tracking
- Window-less gas flow target

- Magnet-free setup
- Large area vacuum chamber
- Large acceptance forward hybrid calorimeter (HyCal) to cover entire Q² range in a single setting
- GEM for neutral particle rejection and tracking
- Window-less gas flow target

- Magnet-free setup
- Large area vacuum chamber
- Large acceptance forward hybrid calorimeter (HyCal) to cover entire Q² range in a single setting
- · GEM for neutral particle rejection and tracking
- Window-less gas flow target

Møller Scattering Normalization

- Detect single arm Møller scattered electrons
- Møller Scattering is exactly calculable in QED
- Simultaneous measurement minimizes normalization uncertainty

Cross Section Results

- The cross section can be turned into G_E^p through the Rosenbluth equation (below) and a parameterization of the proton magnetic form factor, G_M^p

$$\sigma = \sigma_{\rm Mott} \times \left[\frac{G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)}{1 + \tau} + 2\tau G_M^2\left(Q^2\right) \tan^2\left(\frac{\theta}{2}\right) \right]$$

- The extraction is largely independent of the parameterization chosen
 - In testing several parameterizations, G_E^p varied by no more than 0.2% at high Q^2 to less than 0.01% at the lowest Q^2

We have G_F^p !

- Fit the data and extrapolate to $Q^2 = 0$
- But what fit function?
- The functional form of G_E^p is unknown, so assumptions must be made
- Prior to recording data, PRad tested several functional forms for robustness
- Robustness was determined by trial fits of mock data across the PRad Q^2 range
- RMSE was used as the robustness metric, defined as $\sqrt{\mathrm{bias}^2+\sigma^2}$

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

Polynomial Fits

Polynomial
$$(n) = a_0 \left(1 + \sum_{i=1}^n a_i Q^{2i}\right)$$

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

$$CF(n) = \frac{a_0}{1 + \frac{a_1 Q^2}{1 + \frac{a_2 Q^2}{1 + \dots}}}$$

Continued Fraction Fits

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

Rational Function Fits

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

³Yan et al., "Robust extraction of the proton charge radius from electron-proton scattering data".

• Ultimately the Rational(1,1) function was chosen

$$f\left(Q^2\right) = n\frac{1+aQ^2}{1+bQ^2}$$

- This form is approximately monotonic, ensuring that the function does not vary wildly when extrapolated beyond the bounds of data
- The radius is then extracted as $r_p = \sqrt{6(b-a)}$
- *n* is a normalization factor that is unique to each beam energy data set

The Fit

The Fit

Is the puzzle solved?

Yes!

The PRad result agrees with μ H!

But no...

That's only one measurement and many others disagree

It also doesn't explain the disagreeing atomic spectroscopy results

Maybe?

Reanalysis suggests that other data is, in fact, consistent with a small radius, but...

Maybe?

Reanalysis suggests that other data is, in fact, consistent with a small radius, but...

PRad-II

16

- + Lower beam energy for lower Q^2 reach (from $\sim 10^{-5}$ to $6\times 10^{-2}~\text{GeV}^2)$
- New scintillators to descern e p from Møller at low Q^2
- Second GEM plane to reject non-target background
- HyCal upgrade for improved resolution at high Q²

- Lower beam energy for lower Q^2 reach (from $\sim 10^{-5}$ to $6\times 10^{-2}~\text{GeV}^2)$
- New scintillators to descern e p from Møller at low Q^2
- Second GEM plane to reject non-target background
- HyCal upgrade for improved resolution at high Q²

- Lower beam energy for lower Q^2 reach (from $\sim 10^{-5}$ to $6\times 10^{-2}~\text{GeV}^2)$
- New scintillators to descern e p from Møller at low Q^2
- Second GEM plane to reject non-target background
- HyCal upgrade for improved resolution at high Q^2

- Lower beam energy for lower Q^2 reach (from $\sim 10^{-5}$ to $6\times 10^{-2}~\text{GeV}^2)$
- New scintillators to descern e p from Møller at low Q^2
- · Second GEM plane to reject non-target background
- HyCal upgrade for improved resolution at high Q^2

- Lower beam energy for lower Q^2 reach (from $\sim 10^{-5}$ to $6\times 10^{-2}~\text{GeV}^2)$
- New scintillators to descern e p from Møller at low Q^2
- Second GEM plane to reject non-target background
- HyCal upgrade for improved resolution at high Q^2

Nearly 4x precision! Lowest Q² ever recorded!

Item	PRad δr_p [fm]	PRad-II δr_p [fm]	Reason		
Stat. uncertainty	0.0075	0.0017	more beam time		
GEM efficiency	0.0042	0.0008	2nd GEM detector		
Acceptance	0.0026	0.0002	2nd GEM detector		
Beam energy related	0.0022	0.0002	2nd GEM detector		
Event selection	0.0070	0.0027	2nd GEM + HyCal upgrade		
HyCal response	0.0029	negligible	HyCal upgrade		
		0.0016	better vacuum		
Beam background	0.0039		2nd halo blocker		
			vertex res. (2nd GEM)		
Radiative correction	0.0069	0.0004	improved calc.		
Inelastic ep	0.0009	negligible	-		
G ^p _M parameterization	0.0006	0.0005	HyCal upgrade		
Total syst. uncertainty	0.0115	0.0032			
Total uncertainty	0.0137	0.0036			

Full Approval

	E12-20-004	A	В	PRad-II: A New Upgraded High Precision Measurement of the Proton Charge Radius	A. Gasparian* D. Dutta H. Gao D. Higinbotham N. Liyanage E. Pasyuk C. Peng	NCAT State U Mississippi State Duke U JLab U of Virginia JLab ANL	40	A	48	Proposal	
--	------------	---	---	---	--	---	----	---	----	----------	--

Currently, the collaboration is actively seeking funding for the HyCal upgrade

We expect to be ready to run in the next few years

Other PRad Family Experiments

The deuteron radius can be accurately calculated with the proton radius as an input⁴, so a shift in r_p results in a shift in r_D

⁴Pohl et al., "The size of the proton and the deuteron".

Approved with A- rating in JLab PAC 50

Will measure the $\pi^{\rm 0}$ transition form factor using the PRad-II setup

 π^{0} 's will be produced through the Primakoff mechanism ($e^{-}A \rightarrow e^{-}A\pi^{0}$) and the recoil electron and two decay photons of the π^{0} will be simultaneously detected.

Approved with **A** rating in JLab PAC 50

A hidden sector search, with particular emphasis on resolving the X17 anomaly⁵

⁵Krasznahorkay et al., "Observation of Anomalous Internal Pair Creation in Be8 : A Possible Indication of a Light, Neutral Boson".

Experiment idea to run PRad-II with the proposed positron beam upgrade This measurement could assess charge-odd radiative corrections (particularly Bremsstrahlung) when combined with electron scattering data

⁶Hague et al., "Elastic positron–proton scattering at low Q²".