Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

Gary Robertson On Behalf of the LHCb Collaboration CIPANP 2022

1st September 2022

University of Edinburgh gary.robertson@cern.ch

Outline

- Exotic hadron naming convention. [arXiv:2206.15233]
- First observation of a doubly charged tetraquark and its neutral partner.
 [LHCb-PAPER-2022-026][LHCb-PAPER-2022-027]
- Observation of a resonant structure near the D⁺_sD⁻_s threshold. [LHCb-PAPER-2022-018] [LHCb-PAPER-2022-019]
- Observation of a J/ψΛ resonance consistent with a strange pentaquark candidate in B[−] → J/ψΛp̄. [LHCb-PAPER-2022-031]

1st September 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

1/32

Motivation

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

2/32

G. Robertson – CIPANP 2022 1st September 2022

Motivation

- Exotic hadrons are ones which have greater than 3 valence quarks (tetraquarks, pentaquarks, hexaquarks...).
- Proposed in Gell–Mann's quark model paper (Phys. Lett.(8) 3 (1964)).
- Observation of an exotic hadron – χ_{c1} (3872) by BELLE in 2003 in J/ $\psi\pi\pi$ mass spectrum. (PRL (91), 262001 (2003)).
- First observation of a pentaquark was by LHCb in 2015 in J/ψp mass spectrum. (PRL (115), 072001 (2015),

PRL (122), 222001 (2019)).

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq), etc., while mesons are made out of (qq), (qq \bar{q}), etc. It is assuming that the lowest

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st

1st September 2022 3/32

Since Then?

Motivation

So far, ATLAS, CMS and LHCb have discovered 67 new hadronic states of which 20+ are exotic – all but 2 discovered at LHCb (Plot Source).

Since Then?

Motivation

So far, ATLAS, CMS and LHCb have discovered 67 new hadronic states of which 20+ are exotic – all but 2 discovered at LHCb.To be discussed in this talk. (Plot Source)

Motivation

Why LHCb?

- Largest heavy–flavour dataset collected – 9 fb⁻¹ with Run 1+2.
- Largest production cross-sections of b and c hadrons.
- Specialised trigger for hadronic decays.

- Two Ring Imaging CHerenkov (RICH) detectors allow excellent PID.
- VErtex LOcator (VELO) and tracking stations allow precise tracking of particles.

6/32

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022

Exotic Hadron Naming Convention

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

1st September 2022

інср

7/32

- Many new exotic hadrons do not fit into the current PDG naming convention.
- Even these have flaws however:
 - P_c for a ccuud pentaquark how would we label an open–charm pentaquark state? [LHCb-PAPER-2019-014]
 - Z_{cs}(4000) and Z_{cs}(4220) labelled as Z, with I=1/2 Z should only be used when I=1. [LHCb-PAPER-2020-044]
- More exotic hadrons to come from LHC experiments as well as others (Belle II *etc.*) drives the need for an updated naming scheme.
- It should be backwards compatible with our current convention.
- Should be formulaic and as simple as possible.
- Should be somewhat futureproof we may find 6/7 (and so on) quark states in the future, we should be prepared to give them appropriate names.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment G. Robertson – CIPANP 2022 1st September 2022

8/32

Outline of New Convention

- Any state with less than 4 quarks will remain unchanged.
- Use T for tetraquarks and P for pentaquarks.
- Superscript will indicate isospin, parity and G-parity.

T states				T states			P states				
zero net S, C, B				non-zero net S, C, B							
(<i>P</i> , <i>G</i>)	<i>l</i> = 0	/ = 1		(<i>P</i>)	<i>l</i> = 0	$I = \frac{1}{2}$	/ = 1	<i>l</i> = 0	$I = \frac{1}{2}$	<i>l</i> = 1	$I = \frac{3}{2}$
(-, -)	ω	π		(-)	η	au	π	Λ	Ν	Σ	Δ
(-,+)	η	ρ		(+)	f	θ	а				
(+, +)	f	b	-								
(+, -)	h	а									

- Subscript Υ , ψ and ϕ indicate hidden beauty, charm and strangeness. If more than one needed then they should be in order of mass.
- For open flavour states, *b*, *c* or *s* can be used.
- For T states the spin J should be added as a subscript. For P states, spin-parity should follow the name.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

Minimal quark content	Current name	$I^{(G)}, J^{P(C)}$	Proposed name
cc	$\chi_{c1}(3872)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$
ccus	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\theta}_{\psi s1}(4000)^+$
ccus	Z _{cs} (4220) ⁺	$I = \frac{1}{2}, J^P = 1^?$	T _{ψs1} (4220) ⁺
5555 C	X(6900)	$I^{G} = 0^{+}, J^{PC} = ?^{+}$	$T_{\psi\psi}(6900)$
csūd	X ₀ (2900)	$J^{P} = 0^{+}$	$T_{cs0}(2900)^0$
csūd	X ₁ (2900)	$J^{P} = 1^{-}$	T _{cs1} (2900) ⁰
ccūd	Tcc(3875)+		T _{cc} (3875) ⁺
bbud	Z _b (10610)+	$I^G = 1^+, J^P = 1^+$	$T_{T1}^{b}(10610)^{+}$
ccuud	Pc(4312)+	$I = \frac{1}{2}$	P ^N _ψ (4312) ⁺
ccuds	P _{cs} (4459) ⁰	<i>l</i> = 0	$P_{\psi s}^{\Lambda}(4459)^{0}$

Minimal quark	Detential decay shannel(a)	1(G) 1P(C)	Proposed name	
content	Potential decay channel(s)	<i>F</i> ⁽²⁾ , 3 (1)		
bcūd	B-D++	$I = 0, J^P = 1^+$	$T_{bc1}^{f}(mass)^{0}$	
bcūd	B-D+-	$I = 1, J^{P} = 1^{+}$	$T^a_{b\bar{c}1}(mass)^{}$	
bbūđ	$B^{-}\pi^{-}D^{+}, \bar{B}^{0}J/\psi K^{-}$	$I = 0, J^P = 1^+$	$T_{bb1}^{f}(mass)^{-}$	
ccbd	$J/\psi \overline{B}^0$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\theta}_{\psi b1}(mass)^0$	
bbuud	Ϋ́ρ	$I = \frac{1}{2}$	$P_{T}^{N}(mass)^{+}$	
bcuud	B_c^p	$I = \frac{1}{2}$	$P_{b\bar{c}}^{N}(mass)^{0}$	
būcds	$B^{-}=c^{0}$	/ = 1	$P_{bcs}^{\Sigma}(mass)^{-}$	
cdcus	$D^+\Xi_c^+$	<i>l</i> = 1	$P_{ccs}^{\Sigma}(mass)^{++}$	
cccud	$J/\psi A_c^+$	<i>l</i> = 0	$P^{\Lambda}_{\psi\sigma}(mass)^+$	
cccus	$J/\psi \equiv_c^+$	$I = \frac{1}{2}$	$P_{\psi cs}^{N}(mass)^{+}$	

G. Robertson – CIPANP 2022

- Slightly alters some already existing states.
- Can be applied for a wide range of potential future states.
- All analyses discussed today use this new convention (see slide 4).

1st September 2022 10/32

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

First observation of a doubly charged tetraquark and its neutral partner

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 11/32

Motivation

LHCb-PAPER-2022-026

*T*_{cs0}(2900)⁰ and *T*_{cs1}(2900)⁰ (*csud*) previously found by LHCb in *D*⁻*K*⁺ mass spectrum – PRL 125, 242001(2020).

- Possibility to look for isospin partners in $D_s^+\pi^+$ ($c\overline{s}u\overline{d}$) or $D_s^+\pi^-$ ($c\overline{s}u\overline{d}$) final states?
- Can help to determine whether or not D_{sJ} states have some tetraquark component as has been theorised – PRL 90, 242001(2003).

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 12/32

- $B^0 \rightarrow \overline{D}{}^0 D^+_s \pi^-, B^+ \rightarrow D^- D^+_s \pi^+$
- Uses full LHCb Run 1+2 dataset (9 fb⁻¹).
- Applying loose mass and PID cuts already gives a hint of signal, multivariate analysis improves further.

Signal yields:

- $B^0 4172 \pm 131$ with 90% purity.
- $B^+ 3921 \pm 89$ with 89% purity.

G. Robertson - CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

LHC

1st September 2022 13/32

Dalitz plots show similar features – isospin related decay channels.

• Similarity allows for simultaneous fit in amplitude analysis.

1st September 2022 14/32

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

Fit With Only D* Resonances

Fit describes data around 2.9 GeV poorly.

G. Robertson – CIPANP 2022

What if we add a new state? Denoted $T^{a}_{C\overline{S0}}(2900)$.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 15/32

LHCb-PAPER-2022-026

Fit With $T^{a}_{c\overline{s}0}(2900)$ Component

- Fit greatly improved.
- Significance of states in simultaneous fit 9.7σ.
- Strong preference for J^P as 0⁺ (7.5σ).
- Mass shows good agreement with *T_{csJ}*(2900) but with differing width.

$$T_{cs0}(2900)\colon\, M=2.866\pm 0.007\pm 0.002\,\,{\rm GeV}/c^2,$$

$$\begin{split} \Gamma &= 57 \pm 12 \pm 4 \ \mathrm{MeV}, \\ T^a_{cs0}(2900)^0: M &= 2.892 \pm 0.014 \pm 0.015 \ \mathrm{GeV}, \\ \Gamma &= 0.119 \pm 0.026 \pm 0.013 \ \mathrm{GeV}, \end{split}$$

1st September 2022 16/32

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

LHCb

Observation of a resonant structure near the $D_s^+D_s^-$ threshold

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 17/32

- $B^+ \rightarrow D_s^+ D_s^- K^+$ decay has not been previously observed.
- $\chi_{c0}(3930)$ found recently by LHCb in D^+D^- (PRD.102.112003(2020)). Mass and width close to X(3915)(\rightarrow J/ $\psi \omega$). Are they the same state?
- Should have a peak in $D_s^+ D_s^- K^+$ mass spectrum.
- B (B⁺→D⁺_sD⁻_sK⁺) allows to estimate partial width of X near threshold useful for discerning structure (arXiv:1602.08421).
- Can also search for other exotics.

G. Robertson – CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 18/32

Uses full LHCb Run 1+2 dataset (9 fb⁻¹).

 B^+ Yield – 360 \pm 22 candidates with 84.4% purity.

G. Robertson – CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 19/32

- Mass projections show enhancement in D⁺_sD⁻_s around 3.6 GeV/c². Hint of a new state?
- Amplitude analysis needed.

G. Robertson – CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 20/32

- Flatte–like formula used for structure at threshold, Breit–Wigner for known resonances.
- Non–Resonant three–body phase space.
- Dip around 4.14 GeV/c² modelled by destructive interference with a new X(4140) state.

• K–Matrix model can partially be used to model spectrum, suggests strong coupling of $J/\psi \phi \rightarrow D_s^+ D_s^-$.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 21/32

G. Robertson – CIPANP 2022

	Mass (MeV/c ²)	Width (MeV/c ²)	J ^{PC}
$\chi_{c0}(3930)$	3921.7 ± 1.8	18.8 ± 3.5	0++
X(3960)	$3955\pm 6\pm 12$	$48\pm17\pm10$	0++

- Mass and width are consistent within 2.5σ .
- Coupled channel effects mean mass doesn't need to be same.
 - Coupling to $s\overline{s}$ is suppressed relative to $u\overline{u}$.
 - X→D⁺_sD⁻_s near threshold has much smaller phase space than X→D⁺D⁻.
 - ▶ $\therefore D^+D^-$ should have much higher \mathcal{B} than $D_s^+D_s^-$.

• If we assume $\chi_{c0}(3930)$ and X(3960) are the same state: $\frac{\mathcal{B}(X \to D^+ D^-)}{\mathcal{B}(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) FF_{D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) FF_{D_s^+ D_s^- K^+}^X}$

 $= 0.29 \pm 0.09(stat.) \pm 0.10(syst.) \pm 0.08(ext.)$

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 22/32

- If X(3960) and $\chi_{c0}(3930)$ are same state then cannot be conventional charmonium.
- First observation of $B^+ \rightarrow D_s^+ D_s^- K^+$ decay.
- Relative branching fraction measured:

G. Robertson – CIPANP 2022

 $\mathcal{R} = \frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = 0.525 \pm 0.033(\textit{stat.}) \pm 0.027(\textit{syst.}) \pm 0.034(\textit{ext.})$

- X(3960) observed at high significance (>12σ).
- Favours an exotic ($c\overline{c}s\overline{s}$) state with $J^{PC} = 0^{++}$ (>9 σ).
- Evidence of a potentially new $X_0(4140)$ state (<4 σ).
- More studies needed.

Observation of a $J/\psi\Lambda$ resonance consistent with a strange pentaquark candidate in $B^- \rightarrow J/\psi\Lambda\overline{p}$

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

1st September 2022 24/32

Motivation – I

- Pentaquarks seen at LHCb have often been noted to be close to charm-hadron thresholds. (<u>Sci.Bull.66(2021)</u>, PRL (122), 222001 (2019))
- $B^- \rightarrow J/\psi \Lambda \overline{p}$ decay allows to search near thresholds of $\Xi_c D^-, \Lambda_c^+ D_s^-$ and $\Lambda_c^+ \overline{D}^0$.

P^A_{\u03c0} candidates have been predicted by theorists – Progr.Phys.41(2021)65–93.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 25/32

 CMS results with 19.6 fb⁻¹ (~450 events) finds that data are inconsistent with purely phase space contributions. (JHEP12(2019)100)

• Data are consistent with K* contributions.

G. Robertson – CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 26/32

Uses full LHCb dataset (9 fb^{-1}).

- Small Q value (~128 MeV/c²) – 2 MeV/c² resolution.
- Only uses decays where Λ decays in Velo.
- Only uses tracks that go through the entire tracking system.
- Most precise measurement of *B*⁺ mass.
- B^+ yield 4617 \pm 73 with 93% purity.

 $m_{B^+} = 5279.44 \pm 0.05(stat.) \pm 0.07(syst.) \, \text{MeV}/c^2$

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 27/32

LHCb-PAPER-2022-031

- Narrow structure in $J/\psi \Lambda$.
- Broad structure in $J/\psi p$.
- Reflections from K^{*}_{2,3,4}?
- Amplitude analysis needed to determine.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 28/32

- Try first a model with $K^*_{2,3,4}$ and NR($\overline{p}\Lambda$).
- *K**_{2,3,4} does not peak in phase space no evidence of contribution to *p*Λ.

• LHCb dataset has more events than CMS.

 $K_4^*(2045)^+(4^+)$

 2045 ± 9

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

 198 ± 30

LHCb

G. Robertson – CIPANP 2022 1st September 2022 29/32

• Model containing NR($\overline{p}\Lambda$), NR($\overline{p}J/\psi$) and $P_{\psi s}^{\Lambda}$.

- $\chi^2/\text{ndf} = 55.3/39$, $\sim 15\sigma$ significance.
- Spin 1/2, with 1/2⁺ preferred, 1/2⁻ rejected at 90% CL. $m = 4338.2 \pm 0.7(stat.) \pm 0.4(syst.) \text{ MeV}/c^2$

$$\Gamma = 7.0 \pm 1.2(stat.) \pm 1.3(svst.) \text{ MeV}$$

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

Some new and interesting results discussed:

- Brief summary of new naming convention.
- Two new tetraquarks $T^a_{c\bar{s}0}(2900)^{++/0}$ first observation of a doubly charged tetraquark.
- One new X structure X(3960) lots of discussion on its exact structure and distinction from other X states.
- Evidence for $X_0(4140)$.
- One new pentaquark $P^{\Lambda}_{\psi s}(4338)^0$.

G. Robertson – CIPANP 2022

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 31/32

But this is not the end for LHCb:

- Run 1+2 results are still to come.
- Run 3+4 dataset will be ~10x larger than current dataset (arXiv:1808.08865).
- Improved trigger means cleaner hadronic events.

• Stay tuned to LHCb!

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 32/32

Thanks for listening!

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 33/32

Backup slides

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022 1st September 2022 34/32

Spline lineshape is consistent with BW description of resonance.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

G. Robertson – CIPANP 2022

інсь

1st September 2022 35/32

 The dip around 4.14 GeV/c² is near the J/ψφ threshold, so can instead be modelled with a K–matrix:

 But leads to large errors in fit parameters.

G. Robertson – CIPANP 2022

 Baseline model is preferred.

β_1	-1.2 ± 4.5
f_{11}	0.8 ± 1.2
f_{22}	8.0 ± 5.1

1st September 2022 36/32

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

інср

Alternative 1:

- Introducing second $P_{\psi s}^{\Lambda}$ yields $\sim 1.2\sigma$ significance.
- More data needed.
- $\Lambda_c^+ D_s^-$ threshold is ~4255 MeV/ c^2 . $m = 4255 \pm 0.4 \text{ MeV}/c^2, \Gamma = 2.0 \pm 1.1 \text{ MeV}/c^2$

Alternative 2:

• Use BW to model $m(\overline{p}J/\psi)$ lineshape.

G. Robertson – CIPANP 2022

• Model prefers to use second order polynomial for NR($\overline{p}J/\psi$) rather than BW.

•
$$-2\Delta log \mathcal{L} = 80$$
 w.r.t. nominal fit.

Recent Results in Exotic Hadron Spectroscopy at the LHCb Experiment

1st September 2022 37/32

