Search for Exotic Hadrons in $\eta(')\pi$

Malte Albrecht Indiana University

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022)

09/01/2022

Challenges in the Light Hadron Sector

- Many broad and overlapping states discovered
- Assignment to multiplets ambiguous
- Fundamental to gain deeper understanding of strong interaction
 - Ideally: Combine different production and decay modes

[Data from PDG2018]

Production of Hadrons

- Electromagnetic probes:
 - e^+e^- annihilation (CLEO, BaBar, Belle, BESIII, ...)
 - Only direct production of $J^{PC} = 1^{--}$
 - γN Photoproduction (GlueX, CLAS, CBELSA, ...)
- Hadronic probes:
 - *pp* collisions (ATLAS, CMS, LHCb, ...)
 = multiple quark-gluon collisions
 - $\overline{p}p$ annihilation (CB/LEAR, E835, PANDA) = annihilation of quark-antiquark pairs \rightarrow All non-exotic J^{PC} directly accessible
 - πN collisions (COMPASS, ...)

Bay sond-thee Gonstituienthe Qarar Modelel

- Minimal allowed bound states of QCD: Mesons $(q\overline{q})$ and baryons (qqq)
- For mesons: $P = (-1)^{L+1}$ and $C = (-1)^{L+S}$

Allowed Wesor Configurations apart from 47, allowed within the quark model: Forbidder Mytel Guark States (various, possibilities for internal structure!):

- Observation at with J^{PC} to other for $q\bar{q}$ clear evidence for exotics
- Understant CD: What the le of gluons (generation of mass, spin, ...)?
- Configurations with additional gluonic degrees of freedom allowed: [see e.g. PRD 92, 014005; PRD90, 014044 , ...]

Hybrids (mesons with excited gluonic degrees of freedom)

Glueballs (no valence quark content)

Malte Albrecht

DPG Frühjahrstagung 2018 - Bochum

CIPANP 2022

Hybrid search: Primary motivation for the construction of Hall-D / GlueX

Light Quark Mesons from Lattice QCD

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

• Lightest spin-exotic state: $J^{PC} = 1^{-+}$

Light Quark Mesons from Lattice QCD

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

• Lightest spin-exotic state: $J^{PC} = 1^{-+}$

Partial Wave Analysis

- Coupling of the initial to the final state for a reaction is given by the matrix element
- **Goal**: Disentangle interfering contributions and measure spectroscopic properties
- Full kinematic information measured

 → Information about resonances encoded
 → Angular distributions: spin, parity
 → Invariant mass: 'peak' can indicate resonance
- Expand the complex amplitudes in a series of partial waves
 - Angular dependencies (e.g. $Y_l^m(\theta, \phi)$)
 - Dynamical part:
 - "Mass-dependent": Breit-Wigner function, K-Matrix, ...
 - "Mass-independent": bin data in invariant mass, assume constant mass dependency within bin
 - Amplitudes add coherently \rightarrow accounts for interference, allows to measure relative phases

Fermi's Golden Rule $d\sigma \propto |M_{fi}|^2 d\phi_n$

matrix element

n-body phase space element

Hybrid Mesons

- Strongest evidence for π_1 contribution in $\eta \pi, \eta' \pi$ and $\rho\pi$ channels in πN and $\overline{p}p$ reactions
- Possible J^{PC} states for $\eta^{(\prime)}\pi$ system with orbital angular momentum L:

 $\rightarrow \eta^{(\prime)}\pi$ in an odd wave (P, F, ...) has exotic quantum numbers $\cos \theta_{GJ}$

CIPANP 2022

Search for Spin-Exotic Contribution in $\overline{p}p$ data

- Simultaneous analysis of $\overline{p}p \rightarrow K^+ K^- \pi^0, \ \pi^0 \pi^0 \eta, \ \pi^0 \eta \eta$
- Many resonances appear in 2 or all 3 channels
- Advantages: Common amplitudes, less fit parameters
- Allows to separate contributions of different isospin

Coupled Channel Analysis

- Proper consideration of analyticity and unitarity
- Clean data samples ($p_{\overline{p}} = 0.9 \,\text{GeV}/c$):

• Additional constraints by coupling to scattering data (phase&elasticity):

 $I = 0 \ S- \text{ and } D-\text{wave } \pi\pi \to \pi\pi, \ K\overline{K}, \ \eta\eta \ (\eta\eta'),$ $I = 1 \ P-\text{wave } \pi\pi \to \pi\pi$ PRD 83 (2011) 074004, Nucl.Phys.B 64 (1973) 134-162, Nucl.Phys.B 269 (1986) 485, Nuov.Cim.A 80 (1984) 363

Coupled Channel Analysis: Fit Results

- K-Matrix descriptions for f_0, f_2, ρ, a_0, a_2 resonances
 - Pole parameters and coupling strengths are free parameters
 - Good description of data for $\overline{p}p$ channels and scattering data
- Significant contribution of spin-exotic ($J^{PC} = 1^{-+}$) wave!
- Extraction of a multitude of physics results:

[Eur. Phys. J. C 80, 453 (2020)]

Results of Combined Fit with COMPASS Data

- Extension of recent analysis of COMPASS data in $\eta\pi, \eta'\pi$ channels from Joint Physics Analysis Center [A.Rodas et.al. PRL 122, 042002 (2019)]
- Sophisticated description of 1⁻⁺ wave with single pole coupling to two channels
- → Enhancements at 1.4GeV in $\eta\pi$, 1.6GeV in $\eta'\pi$ can be described by a single pole!
- → $\pi_1(1400)$ and $\pi_1(1600)$ hybrid meson candidates are the same?

Name	Pole mass (MeV/ c^2)	Pole width (MeV)	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)
<i>a</i> ₂ (1320)	$1318.7 \pm 1.9 {}^{+1.3}_{-1.3}$	$107.5 \pm 4.6 {+3.3 \\ -1.8}$	$4.6 \pm 1.5 {}^{+7.0}_{-0.6}$	$31 \pm 22 {+9 \atop -11}$
$a_2(1700)$	$1686 \pm 22 {}^{+19}_{-7}$	$412\pm75^{+64}_{-57}$	$3.5 \pm 4.4 {}^{+6.9}_{-1.2}$	$2.9 \pm 4.0 {}^{+1.1}_{-1.2}$
π_1	$1623 \pm 47^{+24}_{-75}$	$455\ \pm 88\ ^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	_

Results of Combined Fit with COMPASS Data

Name	Pole mass (MeV/ c^2)	Pole width (MeV)	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)
<i>a</i> ₂ (1320)	$1318.7 \pm 1.9 {}^{+1.3}_{-1.3}$	$107.5 \pm 4.6 {+3.3 \\ -1.8}$	$4.6 \pm 1.5 {}^{+7.0}_{-0.6}$	$31 \pm 22 {+9 \atop -11}$
$a_2(1700)$	$1686 \pm 22 {}^{+19}_{-7}$	$412\pm75{}^{+64}_{-57}$	$3.5 \pm 4.4 {}^{+6.9}_{-1.2}$	$2.9 \pm 4.0 {}^{+1.1}_{-1.2}$
π_1	$1623 \pm 47 {+24 \atop -75}$	$455 \pm 88 {}^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	_

Spectroscopy using Photoproduction

- Versatile process:
 - Incoming photon may oscillate to ϕ, ω, ρ (Vector Meson Dominance)
 - Various exchange particles possible
 - Linear beam polarization filters naturality of exchanged particle
 - Allows coupling to all lightest hybrid nonet states

- Production of mesonic resonances as well as target excitations
- Ideal also for Baryon spectroscopy
 → background for meson production
- Complementary to πN reaction used by COMPASS, E852, VES

- JeffersonLab: Four main experimental halls
- CEBAF accelerator provides 12 GeV electron beam
- Hall-D: Linearly polarized photon beam produced via bremsstrahlung from thin radiator

The GueX Experiment

 $\sigma_E / E \approx 6 \% / \sqrt{E} + 2 \%$

DEPARTMENT OF PHYSICS • NDIAN UN AFGE ACCEPTANCE for charged and neutral final state particles Bloomington

Rest Frame of Xwhere $X \to \eta \pi$ θ GJ y_{GJ} Rest Frame of Xwhere $X \to \eta \pi$ θ_{GJ} y_{GJ}

 \mathcal{T}

Angular distribution of $a_2(1320)$ signal clearly different between charged and neutral channels

Definition of Amplitudes

- Described by three angles: $\cos(\theta)_{\eta}$ and ϕ_{η} in the $\eta\pi$ rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

 High-energy t-channel picture: 'reflectivity' fixes the product of naturalities of the exchange particle and the produced resonance

Naturality: $\eta = P(-1)^J$ natural parity $\eta = +1$ for: $J^P = 0^+, 1^-, 2^+, \dots$ unnatural parity $\eta = -1$ for: $J^P = 0^-, 1^+, 2^-, \dots$

• In case of $\eta \pi$: positive (negative) reflectivity = natural (unnatural) parity exchange

Definition of Amplitudes

- Described by three angles: $\cos(\theta)_{\eta}$ and ϕ_{η} in the $\eta\pi$ rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

• Basis: Z_l^m amplitudes defined as $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

- Complexity: Positive and negative reflectivity, m = -l...l allowed
- Frequent exchange with JPAC

Fit to $\gamma p \rightarrow \pi^0 \eta p$ data ($0.1 < -t < 0.3 \,\mathrm{GeV}^2$)

- Combined fit, all polarization orientations
- Large S-wave, positive reflectivity contribution
 - Non-resonant?
 - Contribution from other resonance(s)?
 (a₂(1700), a₀(1450), ...)
- Clear signal in m = +2 D-wave
- Waveset based on Tensor Meson Dominance model:

$$L_m^{\epsilon} = S_0^{\pm}, D_0^{\pm}, D_1^{\pm}, D_2^{\pm}, D_{-1}^{-1}$$

[V.Mathieu et.al. (JPAC) PRD 102, 014003 (2020)]

• Perform semi - mass independent fit to extract a_2 contribution - will anker P-wave extraction

Semi-Model Independent Fit ($\gamma p \rightarrow \pi^0 \eta p$)

Extracted Cross Section

- Including $a_2(1700)$ has impact on result, tail underneath $a_2(1320)$ \rightarrow More sophisticated model being tester by gether with 3PAC
- Good agreement with theory prediction
- Extraction of cross section well advanced, systematic checks started

Fit to $\gamma p \rightarrow \pi^- \eta \Delta^{++}$ data

- Combined fit, all polarization orientations
- Dominant S-wave contribution in negative reflectivity component
 - Large contribution in $a_0(980)$ mass region
- Clear signal in m = +1 D-wave $(a_2(1320))$, negative reflectivity
 - Expected for unnatural parity exchange (pion exchange)
 - Tail in D1 wave related to $a_2(1700)$?

Comparison: Charged and Neutral Channels

$\eta\pi^0$:

- Dominated by positive reflectivity, $a_2(1320)$ signal in m = 2 wave at low t
- $\Rightarrow \rho, \omega$ exchange (natural parity)
- Intriguing comparison: $a_2(1320)$ produced exclusively in helicity-2 state in $\gamma\gamma$ -fusion [(L3) Phys.Lett.B 413(1997) 147; (Belle) Phys.Rev.D 80(2009), 032001]

$\eta\pi^-$:

- Dominated by negative reflectivity, $a_2(1320)$ signal in m = 1 wave at low t
 - π exchange (unnatural parity)
- D-wave structure evolves with -t
- Investigation of a_2 production goal for near-term publication
- Groundwork for understanding weaker P-wave contribution

Summary

- Fascinating new results on hybrid meson candidates in recent years
- Very active field, results from different experiments / production processes
 - First observation of spin-exotic contribution in $\overline{p}p$ annihilation in flight
 - Coupling with COMPASS data on $\eta\pi$ and $\eta'\pi$ strengthens interpretation as one underlying pole
- Unique situation for GlueX: High quality photoproduction data sets available, analyses underway
 - Partial wave analysis tools being used and further developed
 - a_2 cross section measurements in $\eta\pi$ channels will anker P-wave extraction
 - Highly productive and valuable collaboration with theorists (JPAC)

Acknowledgements: gluex.org/thanks

CIPANP 2022