Studying small systems using a multi-stage approach

Ismail Soudi

Wayne State University

For the <u>JETSCAPE</u> Collaboration

CIPANP 2022, Lake Buena Vista, Florida: Sept 3, 2022

Table of contents

Introduction

Multi-Stage Approach to small Systems

3D MCGlauber

iMatter: Initial State Radiation

Correlation of soft-hard partons

Summary & Outlook

Introduction

Multi-Stage Approach In Heavy-ion Collisions I

- Modular Framework for studying jets and bulk dynamics of HIC
- Latest version 3.5 available: github.com/JETSCAPE

Diagram by Y. Tachibana

I. Soudi

Multi-Stage Approach In Heavy-ion Collisions I

- Modular Framework for studying jets and bulk dynamics of HIC
- Latest version 3.5 available: github.com/JETSCAPE

Diagram by Y. Tachibana

Multi-Stage Approach In Heavy-ion Collisions II

Diagram by Y. Tachibana

I. Soudi

Multi-Stage Approach In Heavy-ion Collisions III

Inclusive Jet and Hadron Suppression in a Multi-Stage Approach

JETSCAPE Collaboration • A. Kumar Show All(60)

Apr 3, 2022

A. Kumar et al., 2204.01163 [hep-ph]

I. Soudi

Multi-Stage Approach In Heavy-ion Collisions IV

Multi-scale evolution of charmed particles in a nuclear medium

JETSCAPE Collaboration • W. Fan Show All(59)

Aug 1, 2022

W. Fan, et al. e-Print: 2208.00983 [nucl-th] [hep-ph]

I. Soudi

Multi-Stage Approach to small Systems

Jet quenching vs Flow

• Models of flow for high- p_T particles can lead to large supressions

Flow $v_{2,3}$ and supression R_{pPb}

ATLAS Eur. Phys. J. C 80 (2020) 73 X. Zhang and J. Liao, arXiv: 1311.5463 [nucl-th]

- For Small systems:
 - Soft interactions may lead to thermalization of the medium

- For Small systems:
 - Soft interactions may lead to thermalization of the medium
 - Hard partons can interact with the nucleons before the hard scattering

- For Small systems:
 - Soft interactions may lead to thermalization of the medium
 - Hard partons can interact with the nucleons before the hard scattering
 - May lead to modification of the initial state radiation

- For Small systems:
 - Soft interactions may lead to thermalization of the medium
 - Hard partons can interact with the nucleons before the hard scattering
 - May lead to modification of the initial state radiation
 - Correlation of Soft/Hard particle production, i.e. More hard scatterings ⇒ less energy for soft-partons

3D MCGlauber

• Collision geometry is determined by MC-Glauber model

C. Shen & B. Schenke Phys. Rev. C 97, 024907 (2018). C. Shen & B. Schenke, [arXiv:2203.04685 [nucl-th]]. W. Zhao, C. Shen & B. Schenke, [arXiv:2203.06094 [nucl-th]]

C. Shen & B. Schenke Phys. Rev. C 97, 024907 (2018). C. Shen & B. Schenke, [arXiv:2203.04685 [nucl-th]]. W. Zhao, C. Shen & B. Schenke, [arXiv:2203.06094 [nucl-th]]

- Collision geometry is determined by MC-Glauber model
- 3 valence quarks sampled from PDF

C. Shen & B. Schenke Phys. Rev. C 97, 024907 (2018). C. Shen & B. Schenke, [arXiv:2203.04685 [nucl-th]]. W. Zhao, C. Shen & B. Schenke, [arXiv:2203.06094 [nucl-th]]

 Incoming quarks are decelerated with a classical string tension.

$$rac{dE}{dz} = -\sigma \;, \qquad rac{dp_z}{dt} = -\sigma \quad ext{(1)}$$

I. Soudi

C. Shen & B. Schenke Phys. Rev. C 97, 024907 (2018). C. Shen & B. Schenke, [arXiv:2203.04685 [nucl-th]]. W. Zhao, C. Shen & B. Schenke, [arXiv:2203.06094 [nucl-th]]

 Incoming quarks are decelerated with a classical string tension.

$$rac{dE}{dz}=-\sigma\;,\qquad rac{dp_z}{dt}=-\sigma$$
 (1)

• Conservations of energy, momentum, and net baryon density are imposed.

• Energy-momentum current and net baryon density are fed into hydrodynamic simulations as source terms

$$\partial_{\mu} T^{\mu\nu} = J^{\nu}_{\text{Source}} ,$$
 (2)
 $\partial_{\mu} J^{\mu} = \rho_{\text{Source}}$ (3)

 Energy-momentum current and net baryon density are fed into hydrodynamic simulations as source terms

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}_{\text{Source}} ,$$
 (2)

$$\partial_{\mu}J^{\mu} = \rho_{\text{Source}}$$
 (3)

 Parameters callibrated with p+p at LHC

Figure 1: Charged hadron pseudo-rapidity distributions in p+p, experimental data from the ALICE Collaboration

 Energy-momentum current and net baryon density are fed into hydrodynamic simulations as source terms

$$\partial_{\mu} T^{\mu\nu} = J^{\nu}_{\text{Source}} ,$$
 (2)

$$\partial_{\mu}J^{\mu} = \rho_{\text{Source}}$$
 (3)

- Parameters callibrated with p+p at LHC
- Good description of charged hadron distributions at Au+Au at RHIC after retuning of parameters

Figure 1: Centrality dependence of charged hadron pseudo-rapidity distributions in Au+Au, experimental data from the PHOBOS Collaboration

• One firsts generates the hard $2 \leftrightarrow 2$ scatterings using PYTHIA

- One firsts generates the hard $2\leftrightarrow 2$ scatterings using PYTHIA
- The initial state radiation is then generated in a backward shower, starting from the 2 partons that scatters:

T. Sjostrand, Phys. Lett. B157 (1985) 321. G. Marchesini and B.R. Webber, Nucl Phys. B310 (1988) 461. Ellis, R., Stirling, W., & Webber, B. (1996).

I. Soudi

- One firsts generates the hard $2 \leftrightarrow 2$ scatterings using PYTHIA
- The initial state radiation is then generated in a backward shower, starting from the 2 partons that scatters:
- The Sudakov is dependent on the PDF which limits the energy of earlier partons

T. Sjostrand, Phys. Lett. B157 (1985) 321. G. Marchesini and B.R. Webber, Nucl Phys. B310 (1988) 461. Ellis, R., Stirling, W., & Webber, B. (1996).

I. Soudi

- One firsts generates the hard $2 \leftrightarrow 2$ scatterings using PYTHIA
- The initial state radiation is then generated in a backward shower, starting from the 2 partons that scatters:
- The Sudakov is dependent on the PDF which limits the energy of earlier partons
- Splitting probability also $\propto \text{PDF}$

T. Sjostrand, Phys. Lett. B157 (1985) 321. G. Marchesini and B.R. Webber, Nucl Phys. B310 (1988) 461. Ellis, R., Stirling, W., & Webber, B. (1996).

Multi-Stage Approach To Small Systems

• Energy available for the hard shower is subtracted from the sodt sector (3D-MCGlauber)

I. Soudi

Correlation of soft-hard partons

Soft/Hard Correlation

- Soft particle production reduced in p + p and p + A due to the hard processes

Rapidity distribution

⇒ Hadronization still in development to look at the full spectrum (hard+soft)

Hard Hadron Correlation

 Preliminary results of two-particle correations of the high-p_T hadrons

(4)

- Some correlation is oberserved $\frac{1}{N^{\text{trig}}} \frac{\mathrm{d}^2 N^{\text{pair}}}{d\Delta n d\Delta \phi}$
- ! Here we only consider the hadrons from the hard shower
- WIP including hadrons from the soft sector

2 Particle correlations p+p $\sqrt{s} = 5.02 \text{ TeV}$ $1 < p_T < 2 \text{GeV}$ $\hat{p}_T \in [100, 120] \text{GeV}$ $\Delta \phi$ Δn

Summary & Outlook

Summary & Outlook

- Small systems will lead to marginal jet quenching or modification
- While sizeable eleptic flow of high- p_T particles have been observed
- Understanding correlation between soft and hard particle production in small systems is crucial to understanding collectivity and jet modifications

Thank you for listening

And thanks to all collaborators !

I. Soudi