

From THREE to INFINITY

the asymmetric nuclei study at Jefferson Lab

Shujie Li, Berkeley Lab, August 30, 2022

Jefferson Lab as the "Intensity Frontier"

Continuous Electron Beam Accelerator Facility (CEBAF)

- High luminosity: up to 10³⁸/cm²/s ٠
- Electron as the clean probe
- Fixed targets •
- 4 experimental halls, diverse programs ٠

Nuclear structure

Momentum distribution, charge radii,...

Hadron structure

- Nucleons, resonances, mesons
- 1D and 3D imaging

Hadron spectroscopy

Fundamental symmetries

Dark matter, BSM physics,...

Jefferson Lab as the "Intensity Frontier"

Jefferson Lab as the "Intensity Frontier"

•

Deep inelastic scattering on A=1

 $\frac{d^2\sigma}{dxdy} = \frac{2\pi y\alpha^2}{Q^4} \sum_{j} \eta_j \stackrel{\uparrow}{L_j^{\mu\nu}} \stackrel{W_{j}}{W_{\mu\nu}} hadronic tensor$

 $Q^2 = -q^2$ four-momentum transfer

Deep inelastic scattering on A=1 P, **M**·

Leptonic tensor 0

hadronic tensor

$$\frac{d^2\sigma}{dxdy} = \frac{2\pi y\alpha^2}{Q^4} \sum_j \eta_j L_j^{\mu\nu} W_{\mu\nu}^j$$
$$Q^2 = -q^2 \qquad \text{four-momentum transfer}$$

fraction of nucleon momentum carried by the struck quark in parton model. $2M\nu$

 $-q^2$

${\bf F_2}~{\bf n/p} \rightarrow {\bf d/u}$ at large ${\bf x}$

• d/u at $x \rightarrow 1$: a crucial test of valence quark models and pQCD.

Nucleon Model	F_2^{n}/F_2^{p} x \rightarrow 1	d/u x→1
SU(6) Symmetry	2/3	0.5
Scalar diquark	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
pQCD (helicity conservation)	3/7	0.2

 ${\rm F_2}~n/p \rightarrow d/u$ at large x

 d/u at x→1: a crucial test of valence quark models and pQCD.

Nucleon Model	F_2^{n}/F_2^{p} x $\rightarrow 1$	d/u x→1
SU(6) Symmetry	2/3	0.5
Scalar diquark	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
pQCD (helicity conservation)	3/7	0.2

• Access d/u through F₂ n/p

At leading order, assuming charge symmetry

$$F_2^p = x \Big[\frac{4}{9} (u + \bar{u}) + \frac{1}{9} (d + \bar{d}) + \frac{1}{9} (s + \bar{s}) \Big]$$

$$F_2^n = x \Big[\frac{4}{9} (d + \bar{d}) + \frac{1}{9} (u + \bar{u}) + \frac{1}{9} (s + \bar{s}) \Big]$$

Ignore sea quarks and strange quark contributions at x>0.3

$$\frac{F_2^n}{F_2^p} \approx \frac{u+4d}{4u+d} \Rightarrow \frac{d}{u} \approx \frac{4F_2^{n/p} - 1}{4 - F_2^{n/p}}$$

1, 2, 3 ...

${\rm F_2}~{\rm n/p} \rightarrow {\rm d/u}$ at large x

 d/u at x→1: a crucial test of valence quark models and pQCD.

Nucleon Model	F_2^{n}/F_2^{p} x $\rightarrow 1$	d/u x→1
SU(6) Symmetry	2/3	0.5
Scalar diquark	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
pQCD (helicity conservation)	3/7	0.2

- Realistic d/u extraction at x→1 from global QCD analysis
 - lack of constraints from data
 - **NO** free neutron target:
 - n = D p with nuclear correction
 - Iarge uncertainty as $x \rightarrow 1$

The JLab Hall A Tritium experiments

Tritium v.s. Helium-3:

- Large isospin (neutron-proton) asymmetry
- Similar separation energy: 6.26 MeV v.s. 5.49 MeV
- Small Coulomb effect: V_eff = 0.66 MeV v.s. 0

$$^{3}H = 2n + p$$

 $^{3}He = 2p + n$
 $\Rightarrow ^{3}H/^{3}He = (2n/p+1)/(2+n/p)$
 $\Rightarrow n/p$

1, **2**, **3** ...

The JLab Hall A Tritium experiments a collective efforts of many students and postdocs, Hall A staff, engineers, target experts, etc.

Measurement of the Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment

D. Abrams,¹ H. Albataineh,² B. S. Aljawrneh,³ S. Alsalmi,^{4,5} D. Androic,⁶ K. Aniol,⁷ W. Armstrong,⁸ J. Arrington,^{8,9} H. Atac,¹⁰ T. Averett,¹¹ C. Ayerbe Gayoso,¹¹ X. Bai,¹ J. Bane,¹² S. Barcus,¹¹ A. Beck,¹³ V. Bellini,¹⁴ H. Bhatt,¹⁵ D. Bhetuwal,¹⁵ D. Biswas,¹⁶ D. Blyth,⁸ W. Boeglin,¹⁷ D. Bulumulla,¹⁸ J. Butler,¹⁹ A. Carmsonne,¹⁹ M. Carmignotto,¹⁹ J. Castellanos,¹⁷ J.-P. Chen,¹⁹ E. O. Cohen,²⁰ S. Covrig,¹⁹ K. Craycraft,¹¹ R. Cruz-Torres,¹³ B. Dongwi,¹⁴ B. Duran,¹⁰ D. Dutta,¹⁵ E. Fuchey,²¹ C. Gal,¹ T. N. Gautam,¹⁶ S. Gilad,¹³ K. Gnanvo,¹ T. Gogami,²² J. Gomez,¹⁹ C. Gu,¹ A. Habarakada,¹⁶ T. Hague,⁴ J.-O. Hansen,¹⁹ M. Hattawy,⁸ F. Hauenstein,¹⁸ D. W. Higinbotham,¹⁹ R. J. Holt,^{8,*}
E. W. Hughes,²³ C. Hyde,¹⁸ H. Ibrahim,²⁴ S. Jian,¹ S. Joosten,¹⁰ A. Karki,¹⁵ B. Karki,²⁵ A. T. Katramatou,⁴ C. Keith,¹⁹ C. Keppel,¹⁹ M. Khachatryan,¹⁸ V. Khachatryan,²⁶ A. Khanal,¹⁷ A. Kievsky,²⁷ D. King,²⁸ P. M. King,²⁵ I. Korover,²⁹ S. A. Kulagin,³⁰ K. S. Kumar,²⁶ T. Kutz,²⁶ N. Lashley-Colthirst,¹⁶ S. Li,³¹ W. Li,³² H. Liu,²³ S. Liuti,¹ N. Liyanage,¹ P. Markowitz,¹⁷ R. E. McClellan,¹⁹ D. Meekins,¹⁹ S. Mey-Tal Beck,¹³ Z.-E. Meziani,¹⁰ R. Michaels,¹⁹ M. Mihovilovic,^{33,34,35} V. Nelyubin,¹ D. Nguyen,¹ Nuruzzaman,³⁶ M. Nycz,⁴ R. Obrecht,²¹ M. Olson,³⁷ V.F. Owen,¹¹ E. Pace,³⁸ B. Pandey,¹⁶ V. Pandey,³⁹ M. Paolone,¹⁰ A. Papadopoulou,¹³ S. Park,²⁶ S. Paul,¹¹ G. G. Petratos,⁴ R. Petti,⁴⁰ E. Piasetzky,²⁰ R. Pomatsalyuk,⁴¹ S. Premathilake,¹ A. J. R. Puckett,²¹ V. Punjabi,⁴² R. D. Ransome,³⁶ M. N. H. Rashad,¹⁸ P. E. Reimer,⁸ S. Riordan,⁸ J. Roche,²⁵ G. Salmè,⁴³ N. Santiesteban,³¹ B. Sawatzky,¹⁹ S. Scopetta,⁴⁴ A. Schmidt,¹³ B. Schmookler,¹³ J. Segal,¹⁹ E. P. Segarra,¹³ A. Shahinyan,⁴⁵ S. Širca,^{33,34} N. Sparveris,¹⁰ T. Su,^{4,46} R. Suleiman,¹⁹ H. Szumila-Vance,¹⁹ A. S. Tadepalli,³⁶ L. Tang,^{16,19}

(Jefferson Lab Hall A Tritium Collaboration)

- Low-density, room temperature gas target system
- 25 cm alloy target cell
- 1000 Ci of tritium gas (safe to ship with FedEx)

1, **2**, **3** ...

The JLab Hall A Tritium experiments

a collective efforts of many students and postdocs, Hall A staff, engineers, target experts, etc.

The asymmetric nuclei study at JLab | Shujie Li

Charge Normalized Yield

E12-11-103 "MARATHON" F2n/p, EMC 10.1103/PhysRevLett.128.132003

E12-14-011 high momentum nucleon distribution

10.1016/j.physletb.2019.134890, 10.1103/PhysRevLett.124.212501

E12-11-112 isospin dependence of SRC 10.1038/s41586-022-05007-2

E12-17-003 nnL hypernuclei 10.1103/PhysRevC.105.L051001

Tritium v.s. Helium-3:

- Large isospin (neutron-proton) asymmetry
- Similar separation energy: 6.26 MeV v.s. 5.49 MeV
- Small Coulomb effect: V_eff = 0.66 MeV v.s. 0

Nucleus binding energy: O(10) MeV DIS momentum transfer: O(10) GeV

The EMC Effect

15

The EMC Effect

The

16

p/n momentum distribution in ³He

1, 2, 3 ... Quasi-elastic scattering to probe high $simall q^2$ momentum nucleons

p/n momentum distribution in ³He

~ nucleon initial momentum in PWIA

Short-range correlated (SRC) N-N pair in nuclei:

- large back-to-back momentum, low excitation state
- mainly n-p pairs (isospin=0)

Short-range Correlations in Coincidence Measurements

Count high momentum triple-coincidence pairs Inciden electron Knocked-out proton Correlated partner proton or neutron Subedi et al, Science 320, 1476 (2008) 12C 80% 18% 1% Single nucleons The as p-p

Short-range Correlations in (e, e')

The asymmetric nuclei study at JLab | Shujie Li

Extract np/pp SRC Pair Ratio From ³H/³He Ratio:

Extract np/pp SRC Pair Ratio From ³H/³He Ratio:

Extract np/pp SRC Pair Ratio From ³H/³He Ratio:

Ratio of np/pp SRC pairs in A=3 nuclei: R_{np/pp} =4.2+-0.4

> Remove contribution from pair counting: 2 np pairs v.s. 1 pp(nn) pair

np/pp "enhancement factor" = 2.1+-0.2

To be appeared on Nature <u>SL</u> et. al, 10.1038/s41586-022-05007-2

A-dependance of np SRC

Ca48: Nguyen, D. et al. Phys. Rev. C, 102, 064004 (2020)

SRC-EMC Relations

SRC-EMC Relations

A road map to infinity

See talks from D. Higinbotham, N. Fomin, J. Arrington, F. Hauenstein, **Thursday afternoon**@Camelia/Dogwood

Nuclear Matter

- equation of state (see C. Drischler's talk)
- symmetric vs. neutron excess

Isospin effect and flavor dependence

Parity Violating Electron Scattering

The power of weak

From Neutron Skin to Neutron Stars see J. Mammei's talk

Summary

- Electron scattering has unique sensitivity to important nuclear properties. Careful choice of asymmetric targets provides insight into both general nuclear structure and isospin/flavor dependence
- The recent tritium experiments at Jefferson provide high impact results on
 - F_2 n/p at large x
 - n/p momentum distributions and np/pp SRC ratio in A=3 system
 - The combined MARATHON and SRC results will provide unique information to understand the SRC-EMC relation.
- Starting Fall 2022, experiments at Hall C, JLab will map out the EMC-SRC relation in various light and heavy nuclei to disentangle the A vs. N/Z dependence. Also, following the success of Hall A tritium program ("once in a generation"), a broad CLAS program with tritium has been approved by JLab.
- Parity-violation electron scattering provide unique access to neutron skin thickness on heavy nuclei. That will also be used to determine the flavor-dependence in EMC effect with the future SoLID project.

THANK YOU!

From Neutron Skin to Neutron Stars

Elastic Scattering

-

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp.} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{F_{ch}^2 + \tau F_M^2}{1 + \tau} + 2\tau F_M^2 tan^2(\frac{\theta}{2})\right]$$

$$\left\langle r^2 \right\rangle \equiv -6\hbar^2 \frac{dF(q^2)}{dq^2} \bigg|_{q^2=0}$$

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} \rightarrow \frac{F_{ch^{3}H}}{F_{ch^{3}He}} \rightarrow \Delta R_{RMS}$$

Jefferson Lab Experiment E1214009 Approved but not scheduled Ratio of the electric form factor in the mirror nuclei 3He and 3H Spokespersons: Arrington, John Lawrence Berkeley Laboratory, Berkeley, CA johna@jlab.org Averett, Todd The College of William and Mary averett@jlab.org Higinbotham, Douglas Jefferson Lab doug@jlab.org

Myers, Luke

Bluffton University <u>lmyers@jlab.org</u>

Data taken during beam study

- Beam current: 5µA
- Beam energy: 1.171 GeV
- Momentum: 1.128 GeV
- Angle: 17 degree
- Q² = 0.11 GeV²

Ref.	$^{3}\mathrm{H}$	$^{3}\mathrm{He}$	
SACLAY	1.76 ± 0.09	1.96 ± 0.03	$\Delta R_{\rm RMS} = 0.20 \pm 0.1$
Bates	1.68 ± 0.03	1.97 ± 0.03	$\rightarrow \Delta R_{RMS} = 0.29 \pm 0.04$
GFMC	1.77 ± 0.01	1.97 ± 0.01	ALIAS
$\chi { m EFT}$	1.756 ± 0.006	1.962 ± 0.004	_

Quasi-elastic Scattering

to access the initial state of correlated nucleons

At 1.4<x<2:

Inclusive measurement:

- Calculate the nucleon initial momentum **range** from electron kinematics
- High statistics
- Need high x, high Q2
- Competing process @ meson exchange current

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Short-distance behavior and the EMC effect

1. EMC effect driven by average density of the nucleus [J. Gomez, et al., PRD 94, 4348 (1994), Frankfurt and Strikman, Phys. Rept. 160 (1988) 235]

2. EMC effect is driven by Local Density (LD) – overlap of nucleons [J. Seely et al., PRL 103, 202301, 2009]

SRCs generated by interactions in short-distance (high-density) np pairs EMC effect driven by high-density nucleon configurations (pairs, clusters)

3. EMC effect driven by High Virtuality (HV) of the nucleons [L. Weinstein et al, PRL 106, 052301,2011] SRC measurements directly probe high-momentum nucleons EMC effect driven by off-shell effects in high-momentum nucleons

First comparison of HV/LD explanations of EMC-SRC correlation: JA, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, PRC 86 (2012) 065204

Nucleon-Nucleon Short Range Correlation (SRC)

Free nucleon-nucleon potential = **Repulsive core+ attractive tensor force** T = 1, S = 0 :np, pp, nn pairs. The tensor operator $S_{1,2}$ = 0, no attractive tensor force T = 0, S = 1: Deuteron-like np pair.

1, **2**, **3** ...

Tritium experiments at JLab

Tritium v.s. Helium-3:

- Large isospin (neutron-proton) asymmetry
- Similar separation energy: 6.26 MeV v.s. 5.49 MeV
- Small Coulomb effect: V_eff = 0.66 MeV v.s. 0

