14 TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2022)

Proton structure and hadronization at LHCb

Sookhyun Lee (University of Michigan, Ann Arbor) on behalf of the LHCb collaboration Conference on the Intersections of Particle and Nuclear Physics 2022 sookhyun@umich.edu Sep 2, 2022

Sookhyun Lee CIPANP 2022

Nonperturbative dynamics inside proton and hadronization at LHCb

- Precision measurements, proton structure, and hadronization are main parts of QCD/EW program at LHCb.
- W mass, Z production, quark PDFs (light- and heavy-quarks, transverse momentum dependent (TMD) distributions) ...
- Jet substructure, jet fragmentation functions (JFFs) for light- and heavy-quarks, and resonances.
- \rightarrow This talk presents new results in the following topics:
- \Box Intrinsic charm in Z + c
- □ Angular coefficients in DY
- \Box Multi-differential TMD JFFs for different charged hadrons in Z + jet

The LHCb experiment

- General purpose detector in the forward region (2 < η < 5)
- \circ Charged particle identification
- \circ Impact parameter resolution 15+29/ $p_{
 m T}$ [GeV]
- $\circ~$ Decay time resolution 45 fs
- Muon reconstruction for resonance states
- Full jet reconstruction with tracking, ECAL and HCAL + Tagging of jets from light-quark, c- and b-quark

Physics at LHCb :

- Matter-antimatter symmetry
- CP Violation and rare decays of beauty and charm hadrons
- QCD, Electroweak and exotica ...

Is there charm in the proton?

Phys. Lett. B **93** (1980) 451 Phys. Rev. D **23** (1981) 2745

Extrinsic

: Perturbative charm content via gluon radiation $g \rightarrow c \bar{c}$.

- : Charm pairs created from DGLAP evolution.
- : Charm PDF will resemble gluon PDF, and decrease sharply at large x.

Intrinsic

: $|uudc\bar{c} > \text{component allowed in}$ the proton wave function .

: Both valance-like and sea-like charm possible.

C

Intrinsic charm at LHCb

Leading order Zc production via $gc \rightarrow Zc$ scattering at LHCb

Phys. Rev. D 93 (2016) 074008

$$\mathcal{R}_{j}^{c} \equiv \sigma(Zc) / \sigma(Zj)$$

- Z + c production at forward rapidity requires one initial parton to have large momentum fraction x.
- Z + c requires large momentum transfer Q above EW scale, hence small nuclear and hadronic effects.
- Z + c to Z + j ratio to reduce sensitivities to experimental and theoretical uncertainties.

- Light Front QCD: Non-perturbative IC manifests as valence-like charm content in the parton distribution functions (PDFs) of the proton at large x.
- Perturbative charm content via gluon radiation $g \rightarrow c\bar{c}$ is expected to be suppressed at large x, at forward rapidity.
- A percent-level valence-like IC contribution would produce a clear enhancement in R_i^c for large (more forward) values of Z rapidity, y(Z).

- Three scenarios, assuming no IC, IC allowed and valence-like IC (BHPS).
- A sizable enhancement at forward Z rapidities, consistent with the effect expected if the proton wave function contains the $|uudc\bar{c} >$ component.
- LHCb results rules out no IC prediction from global analysis performed by NNPDF group at 3σ deviation level, supporting existence of IC.
- Consistency between prediction and the measurements indicates success of DGLAP evolution from low *Q* in DIS to EW scale at LHC.

DY neutral current process

- Rich physics encoded in angular distribution of muons from $\gamma^*/Z \rightarrow \mu^+\mu^-$ decay in the forward region.
- Z-boson cross-section measurements at low Z $p_{\rm T}$ (< 0.2 m_Z) already used for global analyses of unpolarized TMD PDFs.

Angular coefficients

- Production mechanisms for spin 1 particles decaying into dileptons can be expressed using 8 angular coefficients A_i (i =0,... 7).
- Lam-Tung relation A₀ = A₂ at LO; can be violated by NP effects, e.g. Boer-Mulders TMD PDF, or even perturbatively at higher order in FO as well as resummation pQCD calculation.
- A₃, A₄ : V-A structure.

Lepton angular distribution

$$\frac{d\sigma}{d\cos\theta d\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi,$$

TMD PDFs and DY

Boer-Mulders Fn

: quark spin-momentum correlation : can be measured via DY angular distribution at low $p_{\rm T}$ (cos 2 φ modulation) at LHCb.

 $h_1^{\perp} = P$

DY angular coefficients

- New LHCb results!
- Overall agreement in trends between data and predictions with an exception of Pythia.
- Significant violation of Lam-Tung relation observed.

- Significant violation of Lam-Tung relation observed.
- Consistent with measurements by CMS and ATLAS.

Boer-Mulders TMD PDF

- A_2 in the low p_T region sensitive to the Boer-Mulders TMDPDF
- At $p_T(Z) < 3$ GeV/c, A₂ measured to be ~ 5 times all predictions.
- No phenomenological calculations available.

20

Jet substructure

Jet substructure ho

- fragmenting jet function (FJF)
- TMD FJF

...

- Jet angularity

$$\frac{d\sigma^{pp\to jet\,(\rho)X}}{dp_T d\eta\,d\rho} = \sum_{a,b,c} f_a \otimes f_b \otimes H^c_{ab} \otimes \mathcal{G}_c(\rho)$$

Phys. Rev D **81** (2010) 074009 Phys. Rev. D **92** (2015) 054015 JHEP **11** (2016) 155 JHEP **1804** (2018) 110

Accessing TMD FF using hadrons in jets

JHEP 05 (2011) 035 JHEP 11 (2017) 068 Phys. Lett. B 798 (2019) 134978

$$\frac{d\sigma^{pp \to jet(h)X}}{dp_T d\eta dz_h d^2 \boldsymbol{j}_\perp} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes H^c_{ab} \otimes \mathcal{G}^h_c(z_h, \boldsymbol{j}_\perp)$$
$$\sim \widehat{D}_{h/c}(z_h, j_\perp, \mu_J)$$
$$: \mathsf{TMD} \ \mathsf{FF}$$

$$z = \frac{p_{jet} \cdot p_h}{|p_{jet}|^2}$$

 $j_T = \frac{|p_{jet} \times p_h|}{|p_{iet}|}$

1D measurements of nonidentified h^{\pm} in Z+jets Phys. Rev. Lett. 123 (2019) 232001

Gluon- vs. quark-initiated jets

- LHCb Z+jets (quark jet) vs. ATLAS inclusive jets (gluon jet)
- Quark-initiated jets are more collimated and takes a larger partonic momentum fraction than gluon jets.

JFF at LHCb

- New results at LHCb!
- Charged hadrons in Z-tagged jets.
- At small z < 0.02, effects of color coherence as well as kinematic cuts manifest as a humped-back structure.
- Harder jets, higher $p_{\rm T}$ or higher \sqrt{s} , produce an excess of soft particles per jet; access smaller z.
- Scaling behavior at large z > 0.04.
- Similar pattern in $j_{\rm T}$ between $\sqrt{s} = 8$ TeV vs 13 TeV.

JFF for π^\pm , K^\pm and p^\pm

arxiv:2208.11691

- Charged hadron formation within jets predominantly by π[±] due to its low mass and flavor content of initial-state proton.
- Hadrons with higher mass require a larger z threshold for their formation. Delayed scaling behavior shown in heavier charged particles.

- In lowest jet p_{T} interval:
 - Proton production relative to kaons clearly suppressed at lower z.
 - Pythia 8 overestimates K^{\pm} , p^{\pm} production relative to π^{\pm} .

Multi-differential TMD JFF for charged hadrons h^{\pm}

arxiv:2208.11691

- Hadrons carrying large momentum fraction along jet axis tend to have large transverse momentum w.r.t. jet axis.
- Centroid of harder jets shifted towards smaller z (soft particle production) and larger $j_{\rm T}$ (wider jet).
- Larger j_T for given z in jets with higher p_T; consistent with Markov chain fragmentation models, e.g. string or cluster models.

Multi-differential TMD JFF for π^{\pm} , K^{\pm} and p^{\pm}

arxiv:2208.11691

- Multidifferential distributions for pions, kaons and protons at 20 < jet $p_{\rm T}$ < 30 GeV/c
- Heavier hadrons produced from harder partons, i.e. larger $j_{\rm T}$ as well as larger z.

Summary and outlook

- □ LHCb QCD/EW program performed precision and jet substructure measurements to advance our understanding of nonperturbative dynamics inside proton and hadronization.
- □ Charm jet to Z jet ratio measurements revealed presence of valence-like intrinsic charm component at large momentum fraction x.
- New LHCb measurements rule out no-IC predictions based on global analysis by NNPDF at 3 σ deviation level.
- Consistency between measurements and predictions indicates successful DGLAP scale evolution from DIS to EW scale at LHC.
- **DY angular coefficient** measurements saw violation of Lam-Tung relation and hints of NP Boer-Mulders effect for the first time.
- Results consistent with CMS and ALTAS results that also saw significant violation of Lam-Tung relation.
- Phenomenological calculations needed to use new results to extract BM fn.
- □ Multi-differential TMD JFF measured for charged pions, kaons and protons for the first time.
- Results shed lights on particle dependent hadronization processes within jets.
- Hadrons carrying larger jet momentum fraction in longitudinal direction tend to carry larger transverse momentum w.r.t. jet axis as well.
- Heavier hadrons are produced from harder partons.
- Confirm some of features shown in measurements at lower \sqrt{s} = 8 TeV.

□ Hadronization in heavy flavor jets, excited resonance states under way. Results expected to come out soon.

Thank you!