14 TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2022)

Recent cold QCD results from PHENIX at RHIC

Sookhyun Lee (University of Michigan, Ann Arbor)

Sep 1, 2022

Conference on the Intersections of Particle and Nuclear Physics 2022

<u>sookhyun@umich.edu</u>

Overview of PHENIX cold QCD results

- Gluon polarization Longitudinal double spin asymmetry $A_{\rm LL}$
 - Direct photon γ
 - Jets
- Nucleon-parton spin-momentum correlation
 - Transverse single spin asymmetry $A_{\rm N}$
 - Direct photon
 - π^0 , $\eta~$ and π^\pm
 - Open heavy flavor
- Forward neutron A_N in p + p and p + A.

Relativistic Heavy Ion Collider

PHENIX
was here
taking data
until 2016STAR
polarized p+p
running in 2022

- Located at Brookhaven National Laboratory in Long Island, NY.
- World's only polarized synchrotron collider.
- Spin patterns are predetermined for each bunch.

The PHENIX detector

- Central Arm detectors
 - $|\eta| < 0.35$, $2 \times \frac{\pi}{2}$ coverage for ϕ
 - EMCal, RICH, DC and PC
- Forward Arm detectors
 - $1.2 < \eta < 2.2$
 - MPC, FVTX, MuID, MuTr
- Luminosity counters
 BBC (3<|η| <3.9), ZDC (η>6.8)

ΔG - Gluon polarization

- In 80's, polarized DIS data showed $\Delta\Sigma$ contribution to proton spin was only 30%.
- Polarized gluon PDF can be directly accessed via $A_{\rm LL}$ measurements in $\vec{p} + \vec{p}$ collisions.
- RHIC kinematics for jets and hadrons dominated by gg and qg at low x; their $A_{\rm LL}$'s sensitive to gluon polarization.

$$J_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

Longitudinal Double Spin Asymmetry $A_{\text{LL}} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$, + + (+ -): same-sign (opposite-sign) incoming proton helicity

Gluon helicity distributions

- PHENIX and STAR midrapidity data from 2009 $\vec{p} + \vec{p}$ at $\sqrt{s} = 200$ GeV have had a significant on understanding gluon polarization.
 - PHENIX π^0 PRD 90 (2014) 012007
 - STAR inclusive jets PRL 115, (2015) 092002

• DSSV
$$\int_{0.05}^{1} \Delta g(x) dx = 0.20_{-0.07}^{+0.06}$$

- NNPDF $\int_{0.05}^{1} \Delta g(x) dx = 0.17_{-0.06}^{+0.06}$
- With more data to be included (higher \sqrt{s} , forward measurements, more differential, diverse probes)
 - Dijets, π^{\pm} at 200 GeV in 2009 (STAR dijet impact study done in Phys. Rev. D **100** (2019) 114027)
 - Jets, dijets and π^0 at 200 GeV in 2015
 - Jets, dijets, π^0 , π^\pm , $\gamma\,$ at 510 GeV in 2012 and 2013

Direct photon cross sections and A_{LL}

arXiv:2202.08158

- Theoretically golden channel to access gluon polarization; hard process predominantly qg, no fragmentation function.
- Statistically limited due to being EM process.
- Isolated production consistent with predictions from NLO pQCD + NNPDF3.0 + GRV FF.
- Inclusive production affected by multi-parton interactions (MPI).
- Measured asymmetries isolated photons consistent with global fit.

Jet $A_{\rm LL}$ at 510 GeV

- PHENIX jet measurements limited by acceptance, smaller jet radius of R = 0.3.
- Measured asymmetries consistent with nonzero gluon polarization findings based on STAR Jet and PHENIX $\pi^0 A_{LL}$ results.

Transverse structure of proton

Transverse Single Spin Asymmetry (TSSA)

$$A_{N} \equiv \frac{\sigma^{\uparrow 0} - \sigma^{\downarrow 0}}{\sigma^{\uparrow 0} + \sigma^{\downarrow 0}}$$

$$\uparrow \text{ or } \downarrow : \text{ proton transverse spin states.}$$

TMD

- Requires 2 scales:
 - Hard scale Q
 - Soft scale $p_T \ll Q$
- Suitable for
 - SIDIS, DY, W/Z and hadrons in jets

e.g. Sivers Fn:

Collinear Twist-3

- Only require single scale
 - Hard scale: $p_T \sim Q$
- Suitable for
 - Inclusive π^0 , jet, γ and Λ

Efremov, Teryaev; *qgq* correlator Sterman, Qiu Phys. Rev. Lett. 97 (2006) 082002

Nucl. Phys. B 667 (2003) 201

 $T_{q,F}(x,x) = \frac{1}{M_{n}} \int d^{2}\vec{k}_{\perp}\vec{k}_{\perp}^{2} q_{T}(x,k_{\perp})$

TMD

- Requires 2 scales:
 - Hard scale Q
 - Soft scale $p_T \ll Q$
- Suitable for
 - SIDIS, DY, W/Z and hadrons in jets

e.g. Sivers Fn:

 $f_{1T}^{\perp q}(x, k_{\perp}^{2})$ PRD 41 (1990) 83 PRD 43 (1991) 261

Sensitive to orbital angular momentum

Collinear Twist-3

- Only require single scale
 - Hard scale: $p_T \sim Q$
- Suitable for
 - Inclusive π^0 , jet, γ and Λ

 $T_{q,F}(x,x) = \frac{1}{M_p} \int d^2 \vec{k}_\perp \vec{k}_\perp^2 q_T(x,k_\perp)$

Nucl. Phys. B **667** (2003) 201 Phys. Rev. Lett. **97** (2006) 082002 Efremov, Teryaev;Sterman, Qiuqgq correlator

Similar relation holds for **gluon** Sivers Fn and **ggg** correlator.

Sookhyun Lee CIPANP 2022

Direct photon A_N

- First direct photon $A_{\rm N}$
- Measured asymmetry consistent with zero.
- Sensitive to transverse gluon structure inside proton
 - Direct photon production predominantly from QCD Compton scattering.
 - Small contribution from *qgq* correlation function predicted at midrapidity.
- Clean probe for extraction of trigluon correlator and sensitive to gluon Sivers fn.

π^0 and $\eta \, A_{ m N}$

- Improved statistical precision to sub-percent level.
- Measured asymmetries consistent with zero and with previous measurements.
- $A_{\rm N}$ (π^0) **vs.** $A_{\rm N}$ (η): no evidence of differences due to strangeness, isospin or mass.
- Small contribution from *qgq* correlator predicted at midrapidity by JAM Collaboration.
- Moderately sensitive to trigluon correlator and gluon Sivers fn.
- CPI-GPM scenario 1 and 2 maximize (minimize) previously measured open heavy flavor A_N generated by gluon Sivers Fn within statistical uncertainties.

Phys. Rev. D 103 (2021) 052009

GPM: Generalized parton model.

$\pi^{\pm} A_{ m N}$

- First charged pion $A_{\rm N}$.
- Difference between π^+ and π^- at 2σ deviation level.
- $A_{\rm N}(\pi^{\pm})$ **vs.** $A_{\rm N}(\pi^{0})$: Charge average of charged pion asymmetries consistent with neutral pion asymmetries.
- Provide different flavor sensitivities than neutral particles via fragmentation functions; hard process dominated by qg scattering at high $p_{\rm T}$.
- Increasing qgq contribution predicted with hard scale and opposite sign for oppositely charged $\pi's$ (which was seen cancelled in $\pi^0 A_N$).
- Can provide additional information on *qgq* correlators and constrain trigluon correlators.

arXiv:2204.12899

Open heavy flavor A_N

- Charge separated e^+ and $e^- A_N$.
- Measured asymmetries consistent with zero.
- Most sensitive probe of trigluon correlator; $gg \rightarrow Q\bar{Q}$ dominance relative to $q\bar{q} \rightarrow Q\bar{Q}$.
- Model calculations provided by two groups rely on normalizing symmetric and antisymmetric trigluon correlators T_G^(f,d) to unpolarized gluon PDF.
- First quantitative extraction of trigluon correlators.

Best fit results: PRD78, 114013 Kang-Qiu-Vogelsang-Yuan $\lambda_f = -0.01 \pm 0.03 \text{ GeV}$ $\lambda_d = 0.11 \pm 0.09 \text{ GeV}$ PRD84, 014026 Koike-Yosida model $K_G = 6.0 \times 10^{-4} (+0.0014 - 0.0017)$ $K_{G'} = 2.5 \times 10^{-4} (\pm 0.00025)$

Forward neutron A_N in p+p

- Hadronic interactions based model:
 - Interference between amplitudes with π and Reggeon exchange proposed to be dominant source of asymmetries in $p_{\rm T}$ < 0.2 GeV.
 - Negative A_N and linear dependence with p_T predicted by π -R interference; not sufficient to describe data

Phys. Rev. D 103 (2021) 032007

Forward neutron A_N in p+A

Forward neutron A_N in p+A

- $p_{\rm T}$ and $x_{\rm F}$ dependence.
- A_N stays negative and approaches zero in hadronic interaction enhanced data.
- Nuclear dependence of $A_{\rm N}$ amplified in UPC enhanced data.

Summary

□ PHENIX measured first direct photon cross sections and A_{LL} . Theoretically favorable, but statistically limited. Isolated production and asymmetries consistent with NLO predictions.

 \Box A set of new TSSA measurements sensitive to qgq and trigluon correlators;

- Direct photon, open heavy flavor measurements most clean and sensitive to qgq correlators. First quantitative estimations obtained using OHF measurements.
- Neutral hadrons moderately sensitive to trigluon correlators with suppressed qgq contribution expected.
- □ Charged π^{\pm} asymmetries provide more information on qgq correlators that is cancelled between opposite charges in neutral hadrons.
- Forward neutron TSSA measurements revealed different mechanisms in generating asymmetries in the forward region; Hadronic interactions results in mostly negative asymmetries and show little to no nuclear dependence while UPC interactions show positive asymmetries and strong nuclear dependence.

Thank you!

- Lower x reach compared to previously published 200 GeV $A_{\rm LL}$ data.
- Ideally sign of $\Delta g(x)$ visible in charge ordering of pion $A_{LL}s$.
- Statistics limited due to EM shower based trigger, but important input for global fits.

Identifying direct photon through isolation

Recent spin results from PHENIX