The Status and Anticipated Physics of sPHENIX SPHENE

sPHENIX Mission

REACHING FOR THE HORIZON

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

Probe QGP at Multiple Scales

Parton energy loss vary mass/momentum of probe

Y(1s)

SPHENIX

Cold QCD vary temperature of QCD Matter

b b b b

Y(3s) Y(2s)

Quarkonium spectroscopy

vary size of probe CIPANP2022 – M. Connors (SPHENIX) **A constructoure**ity of Colorado **Bo** Vary momentum/angular scale of probe

RHIC/LHC Complementarity

 Significant overlap achievable with "tomorrow's" RHIC-LHC measurements

SPHE

sPHENIX Detectors

CIPANP2022 – M. Connors (sPHENIX)

Tracking Subsystems

MVTX

- 3 layers Monolithic Active Pixel Sensors (MAPS)
- Based on ALICE ITS upgrade
- DCA_{xy} < 70 μm
- |z_{vtx}|< 10 cm

- ~250 μm effective hit resolution
- Continuous (non-gated) readout
- Pattern recognition, momentum resolution, p_T 0.2-40 GeV/c

INTT

- Four layers forming two barrels of Si strips
- Use PHENIX FVTX electronics
- Pattern recognition, DCA, connect tracking systems, reject pile-up

TPOT

- TPC Outer Tracker
- Calibrate beaminduced space charge distortions
- 8 Micromega modules

Event Characterization Detectors

- Minimum Bias Detector (MBD) $[3.51 < |\eta| < 4.61]$
- Reuse the PHENIX Beam-Beam Counter
- 128 channels of 3cm thick quartz radiator on mesh dynode PMT
- 120 ps trigger level timing resolution

sPHENIX Event Plane Detector (sEPD) [2.0 < $|\eta|$ < 4.9]

- 1.2-cm-thick scintillator w/ wavelength shifting fibe
- 2 wheels of scintillator tiles
- Significant improvement in the event plane resoluti

Hybrid DAQ & Streaming Readout

- Hybrid DAQ system: Triggered Calorimeters & streaming tracking
- Streaming tracking detectors planned for 2024 data collection
 - Crucial for open HF and cold QCD measurements
 - Significantly increases p+p data collected

9

Proposed Plan

First 3 years of data taking

Year

2023

2024

2024

2025

CIPANP2022 – M. Conr

Jet Statistics with Heavy lons

SPHE

Photon-jets at RHIC

CFNS Workshop – M. Connors (sPHENIX)

Photon-jet fragmentation functions

- Photon tags initial hard scattering kinematics $z = p_h / p_{jet}^i$
- Jet reconstructed after energy loss

 p_{iet}^f/p_{iet}^i

- Photon-tagged jets directly probe ΔE

SPHENIX

Photon-jet in sPHENIX

- ■PHENIX for studying jet quenching and
- Photon-jets are a powerful tool for studying jet quenching and medium response effects with sPHENIX
- γ-jet fragmentation functions require:
 - Photon reconstruction in EMCal
 - Jet reconstruction (EMCal+HCals)
 - Tracking (MAPS+INTT+TPC)

Fragmentation Function

W

16

- Event Plane Detector will improve resolutions to enable more precise jet v_2 studies
 - Address $R_{AA} v_2$ puzzle in heavy ions
 - Jet v₂ in p+Au to deepen understanding of small systems

b-tagged Jets

- Sensitivity to collisional vs radiative energy loss
- First b-jet measurement at RHIC
- Complimentary to LHC jets, accessing lower p_T region with

Heavy Flavor

- Streaming readout enables huge MB data for unbiased HF measurements in p+p collisions
- High precision non-prompt D suppression and flow at RHIC

Upsilon R_{AA}

- Separate 3 Upsilon states at RHIC
- Potential to discover $\Upsilon(3S)$ suppression at RHIC

Cold QCD Studies

SPHE

- Nuclear dependence of TSSA for hadrons
- Improved precision from previous PHENIX measurement

Jets Statistics with Cold QCD

Utilizing p+Au and p+p data from year 2

Extends previous RHIC photon/hadron measurements beyond 20 GeV/c

SPHENIX

From Projections to Measurements

- Outer Hcal installed
- Magnet installed
- Inner Hcal installed
- Emcal installation underway

sPHENIX Construction

CIPANP2022 – M. Connors (sPHENIX)

Summary

- sPHENIX will usher in new suite of precise jet, heavy flavor, quarkonia measurements probing the QGP and cold nuclear matter at RHIC
- sPHENIX will provide an overlap of kinematic reach between RHIC & LHC to further constrain theoretical models
- sPHENIX is on schedule to start data collection in 2023!

Back up Slides

Kang et al, PRD **99**, 034006 (2019), m=m_b, rad.+col.

55

50

60

65

Di-jet invariant mass [GeV]

70

75

b-jet Projections

do AA

0.8

0.6

0.4

0.2

0 35

45

40

- sPHENIX b-tagged di-jets compared to calculations from SCET_{MG} framework
 - Precision capable of constraining medium coupling

Upsilon R_{AA}

- Separate 3 Upsilon states at RHIC
- Potential to discover Υ(3S) suppression at RHIC

sPHENIX Timeline

From RHIC to EIC

sPHENIX-note sPH-cQCD-2018-001

G4 Simulation, DIS e+p event @ 18 on 275 GeV, 25mrad crossing, x ~ 0.5, Q² ~ 5000 GeV² Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid

The PHENIX Collaboration February 3, 2014

Christine Aidaia, Alexander Baslevsky, Giorgian Barca-Tasciuc, Nit Feege, Enrique Garnez, Yuli Goto, Xiaochun He, Jin Huang, Athira K V, John Lajole, Grogary Matousek, Kara Mattiol, Pavel Nadel-Turonski, Cynthia Munez, Joseph Oborn, Carlos Perez, Raif Seld, Desmond Shangase, Paul Stankuz, Xu Sun, Jihong Zhang

> For the EIC Detector Study Group and the sPHENIX Collaboration

> > October 2018

Opportunities beyond 3-year plan **SPHE**

- sPHENIX goals accomplished with 3 year plan
- Additional physics opportunities achievable beyond 3 year plan

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	$ z < 10 { m cm}$	z < 10 cm
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	$80 { m pb}^{-1}$
					80 pb ⁻¹ [100%- <i>str</i>]	
_	O+O	200	_	2	$18 { m nb}^{-1}$	$37 \mathrm{nb}^{-1}$
					37 nb ⁻¹ [100%- <i>str</i>]	
-	Ar+Ar	200	_	2	$6 \mathrm{nb}^{-1}$	$12 \mathrm{nb}^{-1}$
					12 nb ⁻¹ [100%- <i>str</i>]	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%- <i>str</i> /DeMux]	30 nb^{-1}