

Recent results on collectivity in small collision systems

Shengquan Tuo (Vanderbilt University) September 3, 2022

ABOUT COLLECTIVITY

Nonflow

• ...

- Jets
- BEC
- Momentum
 Conservation

ABOUT COLLECTIVITY - METHODS

- Nonflow
 - Jets
 - BEC

...

Momentum
 Conservation

CMS pPb $\sqrt{s_{NN}}$ = 5.02 TeV, N^{offline} \ge 110 (b) 1 < p₊ < 3 GeV/c Phys. Lett. B 718 (2013) 795 <mark>1 d²N^{pair} N_{trig} dΔη dΔφ</mark> 0 Δn -2 Azimuthal anisotropy $dN/d\phi \propto 1 + \sum v_n \cos(n(\phi - \Psi_n))$

v_n analysis method with nonflow removal:

• Two particle correlation method with v_n {EP}, v_n {SP}, v_n^{sub} {2,| $\Delta\eta$ |>2}, ...

• Multiparticle correlations with v_n {4, 6, 8, 10, ..., LYZ} (Better removing nonflow)

ABOUT COLLECTIVITY - RIDGE

ABOUT COLLECTIVITY - PHYSICS

(b)

CMS pPb $\sqrt{s_{NN}}$ = 5.02 TeV, N^{offline} \ge 110

Phys. Lett. B 718 (2013) 795

1 < p_ < 3 GeV/c

- Nonflow
 - Jets
 - BEC
 - Momentum
 Conservation

 Ridge: Nearside long range correlations

- CGC
- Color Reconnection and Rope Hadronization

Ridge and v_n but not related to FLOW or QGP • Initial geometry + Hydrodynamics

Azimuthal anisotropy

 $dN/d\phi \propto 1 + \sum v_n \cos(n(\phi - \Psi_n))$

-2

Transport models

FLOW and QGP

- v_n analysis method with nonflow removal:
 - Two particle correlation method with v_n {EP}, v_n {SP}, v_n^{sub} {2,| $\Delta\eta$ |>2}, ...

v_n fluctuations

- Multiparticle correlations with v_n{4, 6, 8, 10, ..., LYZ}
 (Better removing nonflow)
 - Path length dependence
 - Jet energy loss
 - Quarkonium suppression

v_n is not hydrodynamic FLOW but probes QGP

PREVIOUS FLOW STUDY IN SMALL SYSTEMS

OUTLINE FOR RECENT STUDIES

- Results for charged hadrons
 - v_2 and v_3 from PHENIX
 - \bullet Symmetry cumulants and nonlinear v_{n} response from ALICE
 - \bullet v_n decorrelations from ATLAS
 - $v_n\text{-}[p_T]$ correlations from ALICE and CMS
- Identified particles
- Challenges in small systems
- Summary and outlook

V₂ AND V₃ FROM PHENIX

SYMMETRY CUMULANTS IN PP

NONLINEAR RESPONSE

 Higher order flow coefficients contain a non-linear contribution from lower orders

$$\begin{split} \mathsf{V}_4 &= \mathsf{V}_4^{\rm L} + \mathsf{V}_4^{\rm NL} = \mathsf{V}_4^{\rm L} + \chi_{4,22} (\mathsf{V}_2)^2 \\ \rho_{4,22} &= \mathsf{v}_{4,22} / \mathsf{v}_4 \{2\} = \langle \cos(4 \Psi_4 - 4 \Psi_2) \rangle \end{split}$$

IP-Glasma+MUSIC+UrQMD fails to describe data at low multiplicity, but agrees for PbPb
PYTHIA does not describe v₂

• PYTHIA does not describe v_2 well, but does a good job for $v_{4,22}$

DECORRELATIONS IN PP

$$r_n(|\eta^a|) = \frac{c_n(-|\eta^a|)}{c_n(|\eta^a|)} \qquad r_n(|\eta^a|) = \frac{c_2|^{\eta^a=0}(1-F_2|\eta^a|)}{c_2|^{\eta^a=0}(1+F_2|\eta^a|)} \approx 1 - 2F_2|\eta^a|$$

- Larger decorrelation in pp than Xe+Xe at similar multiplicities
- Peripheral XeXe and pp decorrelation follow a power-law decrease
- AMPT can not describe the data at low multiplicity

V₂ - MEAN PT CORRELATIONS

- Apparent sign change for $\rho(c_2\{2\}, [p_T])$ in pPb -> agree with IP-Glasma+Hydrodynamics
- However, no sign change is observed when using $|\eta|\!>\!1.0~(|\Delta\eta|\!>\!2.0)$ for $c_2\{2\}$
 - The sign change signal is not a long-range effect in data
- n=3 results better described by the smaller initial fireball R_{RMS} =0.9 fm in hydrodynamics

V2-IPTI CORRELATIONS - PP

- \bullet Decreasing trend with N_{ch}
- Consistent with PbPb at low multiplicity
- Underestimated by AMPT
- Overestimated by PYTHIA

"FLOW" IN PHOTON-PB COLLISIONS

V₂ IN PHOTON-P COLLISIONS

arXiv:2204.13486

- Search for azimuthal anisotropy in γp interactions with pPb UPC
- Nonflow peripheral subtraction not applied
- Consistent with simulations without collective effects for both γp and pPb in the N_{trk} range

V₂ IN DIS

https://www-h1.desy.de/psfiles/confpap/IS2021/H1prelim-20-033.pdf

- Data described by model without collectivity
- No negative $c_2{4}$
- No collectivity observed in DIS
 - Multiplicity not high enough?
- Looking for the EIC results

V₂ IN ELECTRON-POSITRON

CHARGED PION, KAON AND PROTON FLOW - PPB

- Model without quark coalescence cannot qualitatively describe trends seen in data
- Partonic collectivity observed in p-Pb collisions

STRANGE PARTICLE V₂ - PPB

- $K^0{}_{s}$ and Λ flow studied with multiparticle correlations
- Four and six particle correlations are nearly identical
- Compared with PbPb to illustrate the system size dependence of event-by-event fluctuations

$J/\Psi V_2 - PP$

- J/ ψ v₂ is significant in pPb
- The result in pp is compatible with 0 with current statistics

HEAVY FLAVOR V₂ - PP

VANDERBILT

UNIVERSITY

Phys. Rev. Lett. 124, 082301

- Significant azimuthal anisotropy for charm muon in high multiplicity pp events
- v_2 from b decay ~ 0
- Charm and bottom difference is significant

Y(1S) V₂ - PPB

• Y(1S) v₂ consistent with 0 in pPb, similar in PbPb

CHALLENGES - NONFLOW

Two particle correlations

- Subtracting nonflow
 - Peripheral subtractions
 - Template fitting
 - Methods should be checked with different models
 - Careful with over subtractions

Multiparticle particle correlations

Still affected by nonflow, need subevent event method

CHALLENGES – FLOW FLUCTUATIONS

SUMMARY AND OUTLOOK

- Lots of measurements are done in both experiments and theories for collectivity in small systems
- More studies from theories for identified particles are needed
- So far, the smallest system that can be described by hydrodynamic calculations (some evidence of QGP) is the photon-Pb collision with $20 < N_{ch} < 60$
- Future measurements in small systems:
 - proton-Oxygen and Oxygen-Oxygen collisions
 - Flow in EIC?
- More questions we need to answer
 - What is the smallest possible size for collectivity to emerge?
 - Jet quenching in small systems?
 - Is there a phase transition to QGP for small systems?

BACKUP

$\textbf{BACKUP} - \textbf{V}_{N}\textbf{-}[\textbf{P}_{T}] \textbf{ CORRELATIONS}$

- The correlations carry information about the origin of the observed momentum anisotropy
- No sign change at low multiplicity without initial v_2 from CGC

BACKUP - COVARIANCE

- Clear sign change for pp and pPb collisions with $c_2{2}$
- No sign change at low N_{ch} using multiparticle correlations with current statistics

