Nuclear Physics Measurements to Understand Big Bang Nucleosynthesis

Carl R. Brune

Ohio University, Athens, Ohio

31 August 2022

 14^{th} Conference on the Intersections of Particle and Nuclear Physics Orlando, Florida

Supported in part by the U.S. D.O.E.: DE-FG02-88ER40387, DE-NA0004065

Association for Research at University Nuclear Accelerators

BBN: simplified reaction network

figure: Ken Nollett

BBN: evolution of light elements

figure: Ken Nollett

BBN: light elements H, D, ⁴He, Li

▶ The main game is comparing BBN predictions to observations.

▶ The observations are:

 $D/H = 2.55(3) \times 10^{-5}$ Yeh *et al.* JCAP 03 (2021) 046.

 $Y_p = 0.2453(34)$ Aver *et al.* JCAP 07 (2015) 011,

arXiv:2010.04180.

 $\text{Li/H} = 1.6(3) \times 10^{-10}$ Cyburt *et al.* RMP 88 015004 (2015).

Why do we care?
 Determine the baryon-photon ratio η, compare to value deduce from CMB.
 Search for new physics (neutrinos, new particles, ...).
 Set initial conditions for chemical evolution of the

universe.

How the game is played

Important new result: $D(p, \gamma)^3$ He

Mossa et al. (LUNA), Nature 587, 210 (2020).

Why is this a big deal?

- ▶ The absolute uncertainty is 3%, a factor of 3 improvement over previous measurements.
- ▶ The BBN deuterium abundance calculations agree with predictions based on the CMB at the 3% level.
- ▶ Further progress on the nuclear physics side is called for recall that the observation uncertainty is 1%.
- ▶ The nuclear physics uncertainty is now dominated by the D(d, n) and D(d, p) rates.

Turning now to ${}^{4}\text{He}$

- ▶ The observational uncertainty for ⁴He is also about 1%. The systematic uncertainties are probably more challenging in this case.
- ▶ The neutron half life is the only nuclear physics input that significantly effects the BBN prediction for ⁴He.
- ▶ There is, however, great sensitivity to new physics in this case.
- A nice new measurement of the neutron lifetime, using ultracold neutrons at LANL, has recently been published:
 F. M. Gonzalez *et al.* (UCN τ Collaboration), Phys. Rev. Lett. 127, 162501 (2021).

Current status of the neutron lifetime

The uncertainty coming in the BBN ⁴He calculation coming from this source is negligible (assuming this uncertainty is reasonable). Figure: Particle Data Group.

Now for lithium

- ▶ The observed lithium abundance (presumed to be ⁷Li) is over predicted by a factor of 3 to 4 − far outside the estimated uncertainties.
- Many possible explanations have been considered: depletion subsequent to BBN, new particle physics, observational issues, nuclear physics issues,...
- Many workers is the field believe that depletion is the explanation, although a detailed explanation is lacking.
- ▶ On the nuclear physics side, the reaction ${}^{7}\text{Be} + d \rightarrow 2\alpha + n$ has received considerable attention.
- ▶ BBN predicts ${}^{6}\text{Li} \ll {}^{7}\text{Li}$, but the observational separation of the isotopes remains a challenge.

New measurement of ${}^7\text{Be} + d \rightarrow 2\alpha + n$

Rijal et al. PRL 122, 182701 (2019).

More on ${}^7\text{Be} + d \rightarrow 2\alpha + n$

- ► The cross section would need to be a factor of × ~ 10 larger than presently estimated.
- ▶ The reaction mechanism very complicated, making it very difficult for nuclear theory to make predictions.
- ▶ Improved measurements in the Gamow window for BBN are called for. Intense ⁷Be beams ($\sim 10^9$ /sec) are now available at TRIUMF, making these measurements possible.

Beyond lithium

- ▶ BBN produces very little material heavier than lithium. It is not clear that observations of such isotopes can ever be linked to BBN.
- ▶ However, they remain interesting for several reasons, including constraining non-standard physics and determining the initial conditions for the further chemical evolution of the universe.
- Additional nucleosynthesis mechanisms to consider for Be, B, and CNO include cosmic-ray spallation, neutrino spallation and other reactions immediately following core-collapse supernovae (CCSN), and stellar processes.
- Understanding the origin of Be and B may also provide insight into possible issues with determination of the primordial abundances of H, D, He, and Li.

The possibility of CNO from BBN

- Standard BBN predicts that CNO/H is about 10⁻¹⁴ [Coc, Uzan, and Vangioni, JCAP 10 (2014) 050].
 But it is uncertain by about two orders of magnitude!
- ▶ CNO/H $\gtrsim 10^{-13}$ leads to significant effects on the evolution of the first generation of stars.
- ▶ There are a large number of reactions, many involving radioactive species $(t, {}^{7}\text{Be}, {}^{10}\text{Be}, ...)$, and many are unmeasured.
- ▶ From a nuclear physics perspective, many of the reactions that are important for BBN are also important in the other scenarios (CCSN, stellar nucleosynthesis).

Reactions on ^{10}Be

- ▶ My group at Ohio University is focused on reactions involving the isotope ¹⁰Be ($t_{1/2} = 1.4$ MY): ¹⁰Be(α, n)¹³C, ¹⁰Be(p, n)¹¹B, and ¹⁰Be(p, α)⁷Li.
- \blacktriangleright We are fortunate to possess highly-enriched ¹⁰Be targets.
- Measurements of the above reactions, and the proton-transfer reaction ${}^{10}\text{Be}(d, n){}^{11}\text{B}^*$, are underway at Ohio University.

Recent experiments indicate a new $\ell_p = 0$ low-energy resonance in ¹⁰Be + *p*!

 180° differential cross section, $^{10}Be(d, n)^{11}B^*$, neutron undetected, E. Lopez-Saavedra *et al.*, PRL 129, 12502 (2022), NSCL, Ayyad *et al.*, PRL 129, 012501 (2022).

 ${}^{10}\text{Be}(d, n){}^{11}\text{B}^*$, neutron undetected, FSU, E. Lopez-Saavedra *et al.*, PRL 129, 12502 (2022).

Ohio University: ¹⁰Be(d, n), neutron time of flight $E_d = 4.0 \text{ MeV}, \ \theta_n = 0^\circ$

significant proton width.

Conclusions

- BBN remains a very successful model connecting cosmology to the light elements.
- ▶ It has become a high-precision endeavor.
- ▶ The lithium problem is still with us.
- ▶ There are many interesting nuclear physics question regarding the reactions that affect the Be, Be, and CNO elements.
- Uncertainty quantification and Bayesian methods have become essential tools in this research area.

Thank you for your attention.

And thanks to my many collaborators and the funding sources for making this all possible!

Office of Science

