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Why Intermediate and High-Energy Nuclear Reactions?
Study emergent QCD phenomena: properties of hadrons

▶ Neutron structure (flavor separation)
▶ Influence of nuclear interactions, medium modifications

→ talks Arrington, Hauenstein
▶ Hadronization: how does a colored struck q evolve into a colorless

hadron?
■ space-time evolution through interactions with the nuclear medium

→ talk Vitev
▶ Scattering properties of unstable hadrons through secondary

interactions
■ scattering lengths of strange baryons (CLAS, ALICE)

▶ Some phenomena are unique to nuclei
■ spin > 1

2
, superfast quarks with x > 1

▶ Color transparency → talk Dutta
▶ Gluon saturation at low x (EIC)
▶ . . .
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Why Nuclear Reactions?

Learn more about nuclear structure

▶ What is the nature of the hard core in the NN interaction
■ deuteron breakup at very high momenta

▶ What are the limits of the nuclear shell model?
■ nature and role of short-range correlations

→ talk Fomin
▶ Non-nucleonic degrees of freedom in nuclei

■ delta isobars, hidden color
▶ 3D imaging of nuclear bound states in quark and gluon degrees of

freedom
■ coherent hard exclusive reactions

Wim Cosyn (FIU) CIPANP Sep 02, 2022 3 / 18



Measurements

Image: HERA

▶ Inclusive scattering: SRCs (a2), F2A , F2n , ...
■ Averages over all nuclear configurations

▶ Detect additional hadrons in
■ (a) current fragmentation region: select reaction
■ (b) target framentation region:

control initial nuclear configuration
• recoil nucleon partner from a SRC
• nuclear fragments for light nuclei

→ difficult for low momentum in fixed target, but EIC!
• veto incoherent in eA

▶ Cuts to ensure a particular residual system (e.g. A − 1)
▶ Detected particles are subject to final-state interactions

■ needs to be accounted for
■ interplays with other reaction effects (medium modifications), how to

disentangle?
■ can also be used to study hadronization, scattering, dynamics

→ data with large FSI are useful!
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Quasi-Elastic: FSI in configuration space

b

Γ(b)

z

▶ Medium and heavy nuclei

▶ Glauber theory has origins in optics

▶ High-energy diffractive scattering: small angles

▶ Eikonal method
φscat(r ) = eiχ (r )φin(r ) = (1 − Γ(b)) φin(r )

▶ Parameters taken from data (NN) or educated
guesses
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In an ideal world... A(e, e ′p)

▶ d5σ ≈ KσepS (pm)
▶ Cross section vs relativistic unfactorized calculation

P. Monaghan et al. (JLab Hall A), JPG41 105109 ('14)

▶ Proton knockout from
valence p3/2 shell

▶ FSI: Relativistic Multiple
Scattering Glauber
Approximation

▶ Nice agreement between
RSMGA calculations and
data up to very high
missing momenta
→ No free parameters!
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CT in proton knockout? A(e,e’p)
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data: Bhetuwal et al. (Hall C) PRL '21

▶ RMSGA: excellent
agreement with A(e,e’p)
world data (JLab, SLAC,
MIT Bates)

▶ No signs of CT yet

▶ Similar machinery (including charge exchange) applied to A(e, e ′NN)
JLab measurements
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MC implementation: BEAGLE example

Courtesy of M. Baker
W. Chang et al. PRD 106 (’22) 2204.11998
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Beagle: INC in A(e,e’NN)

Courtesy of M. Baker
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FSI in momentum space
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▶ Eikonal picture: rescatterings are forward
peaked

▶ Effective Feynman diagrammatic rules, takes
recoil of medium into account
[Frankfurt, Sargsian, Strikman]

▶ Light nuclei!
▶ FSI peak at deuteron around 70o

▶ Reduction cross section for spectator momenta
∼ 100 MeV
→ interference IA-FSI

▶ Enhancement cross section for spectator
momenta > 300 MeV
→ FSI2 term

[Sargsian PRC82]
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FSI in DIS: physical pictures
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▶ rescattering of resonance-like structure with
spectator nucleon in eikonal approximation
[Deeps,BONuS].
WC,M. Sargsian arXiv:1704.06117

▶ FSI between slow hadrons from the DIS
products and spectator nucleon, fast hadrons
hadronize after leaving the nucleus.

▶ Shadowing in DIS x ≪ 10
−1

▶ The lower the x the more low-energy NP
the FSI become
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FSI: DIS subasymptotic vs QE
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▶ Plane-wave calculation shows little dependence on spectator angle
▶ FSI effects grow in forward direction, different from quasi-elastic case
▶ Needs more data to constrain!
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Get rid of FSI, measure backwards (?)
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▶ In backward region FSI not necessarily small (compared to forward region) in
these kinematics!
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What can the σXN fit teach us?
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▶ σ rises with invariant
mass W, no sign of
hadronisation plateau

▶ σ drops with Q2, sign of
Color Transparency?

▶ More measurements at higher Q2 needed
▶ Values can be used as input for FSI effects in other calculations, such

as inclusive DIS
[WC, Melnitchouk, Sargsian PRC '14]
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Intermediate x model (EIC): deuteron
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Strikman, Weiss, 1706.02244, PRC '18

▶ Data show slow hadrons in the target
fragmentation region are mainly
nucleons.

▶ Input needed from nucleon target
fragmentation data → possible at EIC

▶ Features similar to quasi-elastic
deuteron breakup.

▶ FSI diagram adds two contributions:
FSI term (∼ absorption, negative)
and FSI2 term (∼ refraction, postive)

▶ At low momenta (pr < 200 MeV) FSI
term dominates, at larger momenta FSI2
dominates.
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Nuclear shadowing

▶ interaction of high-energy probe with coherent
quark-gluon fields

▶ Shadowing is manifestation of coherence
■ Diffractive DIS at x ≪ 0.1: 10-15% of events at HERA
■ Interference between diffractive amplitudes

→ reduction of cross section, leading twist
■ Extensively studied in heavy nuclei
■ Is especially clean in the deuteron, effects can be calculated
■ Dynamics of shadowing can be explored in tagging: single and double
■ Tagging also results in FSI between the slow n and p

[Guzey,Strikman,Weiss; in preparation]
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Shadowing: tagged DIS

[Guzey,Strikman,Weiss; in preparation]

▶ Explore shadowing through recoil
momentum dependence

▶ Shadowing enhanced in tagged DIS
compared to inclusive

■ enhancement factor from AGK rules
■ shadowing term drops slower with pR

than IA

▶ Large FSI effects in diffractive
amplitudes (∼ 40%), also at zero
spectator momenta due to orthogonality
of np state to deuteron

▶ Effects smaller in all tagged as
diffractive are ∼ 10% of total events
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Conclusions
▶ FSI can be a nuisance and but can also be used to study QCD

dynamics

▶ Different FSI dynamics depending on Bjorken x

▶ Magnitude of FSI depends on detected hadron kinematics

▶ Quite well understood for quasi-elastic, tagged DIS (deuteron)
→ but more data helps, especially for DIS

▶ What needs work
■ Tagged DIS for A > 3

■ polarized FSI
■ Tagged DVCS, SIDIS, . . .

▶ Ongoing work in MC development

▶ A lot I couldn’t cover here

Thank you to all my collaborators...
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