Final-State Interactions in Nuclear Breakup Measurements From JLab to EIC

Wim Cosyn

14th Conference on the Intersections of Particle and Nuclear Physics Sep 02, 2022

Why Intermediate and High-Energy Nuclear Reactions?

Study emergent QCD phenomena: properties of hadrons

- Neutron structure (flavor separation)
- ► Influence of nuclear interactions, medium modifications

 \rightarrow talks Arrington, Hauenstein

- ► Hadronization: how does a colored struck *q* evolve into a colorless hadron?
 - space-time evolution through interactions with the nuclear medium
 → talk Vitev
- Scattering properties of unstable hadrons through secondary interactions
 - scattering lengths of strange baryons (CLAS, ALICE)
- Some phenomena are unique to nuclei
 - spin $> \frac{1}{2}$, superfast quarks with x > 1
- Color transparency \rightarrow talk Dutta
- Gluon saturation at low x (EIC)

Learn more about nuclear structure

- ▶ What is the nature of the **hard core** in the *NN* interaction
 - deuteron breakup at very high momenta
- What are the limits of the nuclear shell model?
 - nature and role of short-range correlations → talk Fomin
- ► Non-nucleonic degrees of freedom in nuclei
 - delta isobars, hidden color
- 3D imaging of nuclear bound states in quark and gluon degrees of freedom
 - coherent hard exclusive reactions

Measurements

Image: HERA

- Inclusive scattering: SRCs (a₂), F_{2A}, F_{2n}, ...
 - Averages over all nuclear configurations
- Detect additional hadrons in
 - (a) current fragmentation region: select reaction
 - (b) target framentation region:

control initial nuclear configuration

- recoil nucleon partner from a SRC
- nuclear fragments for light nuclei
 → difficult for low momentum in fixed target, but EIC!
- veto incoherent in eA

• Cuts to ensure a particular residual system (e.g. A-1)

- Detected particles are subject to final-state interactions
 - needs to be accounted for
 - interplays with other reaction effects (medium modifications), how to disentangle?
 - can also be used to study hadronization, scattering, dynamics → data with large FSI are useful!

Quasi-Elastic: FSI in configuration space

- Glauber theory has origins in optics
- ► High-energy **diffractive** scattering: small angles
- ► **Eikonal** method $\phi_{\text{scat}}(r) = e^{i\chi(r)}\phi_{\text{in}}(r) = (1 - \Gamma(b))\phi_{\text{in}}(r)$
- Parameters taken from data (NN) or educated guesses

In an ideal world... A(e, e'p)

• $d^5\sigma \approx K\sigma_{ep}S(p_m)$

Cross section vs relativistic unfactorized calculation

P. Monaghan et al. (JLab Hall A), JPG41 105109 ('14)

- Proton knockout from valence p_{3/2} shell
- FSI: Relativistic Multiple Scattering Glauber Approximation
- Nice agreement between RSMGA calculations and data up to very high missing momenta
 - \rightarrow No free parameters!

CT in proton knockout? A(e,e'p)

 RMSGA: excellent agreement with A(e,e'p) world data (JLab, SLAC, MIT Bates)

 Similar machinery (including charge exchange) applied to A(e, e'NN) JLab measurements

MC implementation: BEAGLE example

Courtesy of M. Baker W. Chang et al. PRD 106 ('22) 2204.11998

Wim Cosyn (FIU)

Sep 02, 2022

Beagle: INC in A(e,e'NN)

JLAB 5.01 GeV FT e+C Q²>3 GeV², x>1.2 EIC 5x50 e+C Q²>3 GeV², x>1.2

Courtesy of M. Baker

FSI in momentum space

- Eikonal picture: rescatterings are forward peaked
- Effective Feynman diagrammatic rules, takes recoil of medium into account

[Frankfurt, Sargsian, Strikman]

- ▶ Light nuclei!
- FSI peak at deuteron around 70°
- Reduction cross section for spectator momenta ~ 100 MeV
 - → interference IA-FSI
- Enhancement cross section for spectator momenta > 300 MeV → FSl² term

[Sargsian PRC82]

FSI in DIS: physical pictures

 rescattering of resonance-like structure with spectator nucleon in eikonal approximation [Deeps,BONuS].

WC,M. Sargsian arXiv:1704.06117

- FSI between slow hadrons from the DIS products and spectator nucleon, fast hadrons hadronize after leaving the nucleus.
- Shadowing in DIS $x \ll 10^{-1}$
- The lower the x the more low-energy NP the FSI become

FSI: DIS subasymptotic vs QE

- Plane-wave calculation shows little dependence on spectator angle
- ► FSI effects grow in forward direction, different from quasi-elastic case
- Needs more data to constrain!

Get rid of FSI, measure backwards (?)

In backward region FSI not necessarily small (compared to forward region) in these kinematics!

Wim Cosyn (FIU)

Sep 02, 2022

▶ More measurements at higher Q² needed

 Values can be used as input for FSI effects in other calculations, such as inclusive DIS [WC, Melnitchouk, Sargsian PRC '14]

14/18

Intermediate x model (EIC): deuteron

Strikman, Weiss, 1706.02244, PRC '18

- Data show slow hadrons in the target fragmentation region are mainly nucleons.
- ► Input needed from nucleon target fragmentation data → possible at EIC
- Features similar to quasi-elastic deuteron breakup.
- FSI diagram adds two contributions: FSI term (~ absorption, negative) and FSI² term (~ refraction, postive)
- At low momenta (p_r < 200 MeV) FSI term dominates, at larger momenta FSI² dominates.

Nuclear shadowing

 x, Q^2

 interaction of high-energy probe with coherent quark-gluon fields

- Shadowing is manifestation of coherence
 - **Diffractive** DIS at $x \ll 0.1$: 10–15% of events at HERA
 - Interference between diffractive amplitudes
 - \rightarrow reduction of cross section, leading twist
 - Extensively studied in heavy nuclei
 - Is especially clean in the **deuteron**, effects can be calculated
 - Dynamics of shadowing can be explored in tagging: single and double
 - **•** Tagging also results in **FSI** between the slow n and p

[Guzey,Strikman,Weiss; in preparation]

Shadowing: tagged DIS

[Guzey,Strikman,Weiss; in preparation]

- Explore shadowing through recoil momentum dependence
- Shadowing enhanced in tagged DIS compared to inclusive
 - enhancement factor from AGK rules
 - shadowing term drops slower with *p_R* than IA
- Large FSI effects in diffractive amplitudes (~ 40%), also at zero spectator momenta due to orthogonality of *np* state to deuteron
- ► Effects smaller in all tagged as diffractive are ~ 10% of total events

Conclusions

- FSI can be a nuisance and but can also be used to study QCD dynamics
- Different FSI dynamics depending on Bjorken x
- ► Magnitude of FSI depends on detected hadron kinematics
- ► Quite well understood for quasi-elastic, tagged DIS (deuteron) → but more data helps, especially for DIS
- What needs work
 - Tagged DIS for A > 3
 - polarized FSI
 - Tagged DVCS, SIDIS, ...
- Ongoing work in MC development
- A lot I couldn't cover here

18/18