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Analyzing the nuclear interaction: challenges and new 
opportunities



Ab initio calculations of nuclear systems
Goal: develop a predictive understanding of nuclei and nucleonic matter in terms of the interactions between 

individual nucleons and external probes
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Nuclear Interactions, Nuclei, and Infinite Matter

Challenge: consistent description of BEs, radii, saturation properties of NM, EoS of PNM, EW properties….  


• Improved and novel 
many-body frameworks


• Increased computational 
resources


• Nuclear interactions and 
currents based on EFTs


• Theoretical uncertainty 
quantification 

Success:
‣ increased many-body capability, algorithms under control


‣ remarkable agreement between different ab intio many-body methods for the  structure of nuclei (not 
the same for infinite matter, continuum coupling,..) 

Issue:
‣  largest uncertainty from input Hamiltonian


‣ a deeper and more quantitative understanding of the connection between properties of matter and 
finite nuclei is still lacking

Tichai et al. PLB 786, 195 (2018) 
Figure 2: Illustration of the scope of ab initio many-body calculations of nuclei from the year 2009 (upper left) to 2018 (lower
right) using NN and 3N interactions. Studied nuclei are highlighted in red. The figures include calculations for which converged
results with respect to the basis size have been achieved. Credits to Heiko Hergert for providing the figures, see also Ref. [18].

shell structure of atomic nuclei, the bulk properties of nuclear matter and the evolution of systems toward
the limits of stability (see Section 5).

The interactions derived within chiral EFT represent the fundamental microscopic input for ab initio

many-body frameworks. In the following we consider all frameworks as “ab initio” which only use free-space
nuclear interactions as basic input and can be systematically improved such that in the limit of infinite basis
size and infinite order in the many-body expansion one can in principle recover results of exact calculations
(see Table 1). In Figure 2 we illustrate the part of the nuclear chart studied within such approaches in the
years 2009, 2012, 2015 and 2018 [18, 19]. Evidently, in recent years there has been a dramatic increase in
the scope of such ab initio frameworks. These advances were driven by developments in di�erent sectors
(see also the right panel of Figure 1):

1. Nuclear interactions: The predictive power of nuclear many-body calculations is naturally limited
by the quality of the employed nuclear interactions. Even results of virtually exact calculations can only
be as good as the underlying input. During the recent years several new families of interactions have
been derived at di�erent orders in the chiral expansion. These e�orts include the exploration of various
di�erent regularization schemes and fitting strategies for the short-range low-energy couplings as well as
the investigation of di�erent methods for estimating uncertainties due to neglected higher-order terms of
the chiral expansion. Most of these investigations are still ongoing. In Section 2 we give a more detailed
overview of these developments.

2. Renormalization Group methods: Renormalization Group (RG) techniques allow to systematically
decouple low- and high-momentum components of nuclear interactions while preserving low-energy observ-
ables [20]. Such RG transformations to lower resolution scales help to reduce the scheme dependence of
nuclear interactions, o�er new tools to assess many-body uncertainties by studying residual resolution scale
dependencies, and, most importantly for practical calculations, can dramatically improve the convergence
of many-body calculations and generate much less correlated wave functions. This improved perturbative-
ness is in particular key for all many-body frameworks based on harmonic oscillator basis expansions (see
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Applications of NN plus 3N forces to atomic nuclei

• contributions from 3N force play important role for location of drip lines
• remarkable agreement between different many-body frameworks
• excellent agreement between theory and experiment for energies of oxygen 
isotopes based on specific chiral interactions
• challenge: correct description of different observables over wide range of the 
nuclear chart

Tichai et al., Phys. Lett. B 786, 195 (2018)
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Figure 2: Absolute ground-state binding energies (top) and two-neutron separation energies (bottom) along O, Ca and Ni isotopic chains.
Results are displayed for second-order BMBPT (⌅), second-order NCSM-PT (l), large-scale IT-NCSM (F), GSCGF-ADC(2) ( H), MR-IMSRG(2)
( ) and CR-CC(2,3) ( ⌅). Experimental value are shown as black bars [34].

by exploiting that the Bogoliubov matrix V (U) becomes
zero for particle (hole) states when the grand potential is
normal ordered, i.e., one recovers the benefit of an explicit
partition between particle and hole states. In principle,
we could also take advantage of the block structure of the
Hamiltonian matrix with respect to isospin that disappears
when normal ordering the grand potential with respect to
a Bogoliubov state [19]. This would lead to an additional
reduction by a factor of about 5, thus, making BMBPT
calculations of open-shell nuclei about 10 times more ex-
pensive than genuine MBPT calculations of closed-shell
systems.

Most importantly, Fig. 3 demonstrates that third-order
BMBPT calculations generate results similar to state-
of-the-art medium-mass approaches at a computational
cost that is about two orders of magnitude smaller, e.g.,
MR-IMSRG(2) requires roughly 2000 CPUh per run when
applied to an open-shell system. The computational
advantage of low-order BMBPT calculations over non-
perturbative approaches could make BMBPT a particularly
useful tool to provide cheap systematic tests of newly gener-
ated chiral EFT Hamiltonians over a wide range of nuclei.

Conclusions. We presented the first full-fledged ab initio

application of Bogoliubov many-body perturbation theory
to finite nuclei. Expanding the exact solution around a
particle-number-broken Hartree-Fock-Bogoliubov reference
state, this single-reference many-body perturbation theory
is systematically applicable to genuine mid- and heavy-mass
open-shell nuclei. As a first proof-of-principle investigation,
systematic ground-state energies along complete isotopic
chains from oxygen up to tin have been computed using
a standard chiral e�ective field theory Hamiltonian. Low-
order BMBPT calculations performed on the basis of a
soft interaction was found to agree at the 2% level with

state-of-the-art non-perturbative many-body methods at
a small fraction of the computational cost. As a matter
of fact, the approach is applicable beyond the tin region
without becoming computationally infeasible. For now,
it is the (in)accuracy of modern Hamiltonians in heavy
systems and the handling of three-body matrix elements
necessary to reach model-space convergence that prevent
us from performing meaningful studies on nuclei far above
mass number A ¥ 100. Furthermore, the dominance of
nuclear deformations for A > 100 requires the additional
breaking of SU(2) symmetry.

Our goal is to expand BMBPT in several directions in the
future. The immediate next step consists of implementing
the consistent adjustment of particle-number corrections
at third order, which requires an iterative evaluation of the
HFB equations, of the quasi-particle normal-ordering and
of the perturbative corrections. A detailed investigation of
this, together with a sensitivity analysis of BMBPT results
with respect to model space parameters and the similarity
renormalization group transformation of the Hamiltonian,
will be the content of an upcoming publication. Next, the
fourth-order correction will be evaluated for high-accuracy
calculations and to further probe the convergence pattern
of the BMBPT expansion. In that respect, it is also of
interest to test Bogoliubov reference states that are not

optimized by solving the HFB equations. While the first
application is limited to ground-state energies, the un-
derlying formalism is currently being extended to other
observables, e.g., charge radii, as well as to low-lying ex-
citation energies and electromagnetic transitions. Given
our capacity to automatically generate and evaluate all
diagrams appearing at an arbitrary order n on the basis
of 2N and 3N interactions [33], it is also of interest to test
the validity of the normal-ordered two-body approxima-
tion to the full 3N interaction. As a mid term goal, we
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Advantages:

• Consistent description of two- and many-

body interactions and currents

• Different processes described on the same 

footing: piN, NN, electroweak 

• UQ due to the truncation in the chiral 

expansion

• Scheme can be systematically improved

State-of-the art of Chiral EFT interactions
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Figure 23: Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

relevant to our present discussion)
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where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and
DT are LECs.5 Moreover, Si are 2 ⇥ 4 spin transition matrices which satisfy SiSj† = (2�ij � i⇥ijk⇧k)/3
and T a are similar isospin matrices with T aT b† = (2�ab � i⇥abc⌃ c)/3. Notice that, due to the heavy baryon
expansion, the mass of the �-isobar, M�, has disappeared and only the small mass di⇥erence �M enters.

The LECs of the ⌅N Lagrangian are usually extracted in the analysis of ⌅-N scattering data and clearly
come out di⇥erently in the �-full theory as compared to the �-less one. While in the �-less theory, the
magnitude of the LECs c3 and c4 is about 3-5 GeV�1 (cf. Table 2), they turn out to be around 1 GeV�1 in
the �-full theory [221].

In the 2NF, the virtual excitation of�-isobars requires at least one loop and, thus, the contribution occurs
first at ⇤ = 2 (NLO), see Fig. 23. The � contributions to the 2PE were first evaluated in Refs. [53, 54, 220]
using time-ordered perturbation theory and later by Kaiser et al. [56] in covariant perturbation theory.

5Our convention for hA is consistent with Refs. [54, 56, 70, 107] and di⇥ers by a factor of two from Refs. [218, 221, 223].

56

Ordonez(et(al.’96;Kaiser(et(al.’98;(
Krebs(et(al.(‘07(

Krebs(et(al.‘07(

Entem(et(al.’15,(Epelbaum(et(al.’15((

Kaiser(et(al.’97((

Kaiser(et(al.’97((
Entem(&(Machleidt(‘02(

Kaiser(’00E’01E’02;(
Entem(&(Machleidt(‘02(

+... +...

+...

Chiral 3N Force

!-less Additional in -full!

LO

(Q/��)0

NLO

(Q/��)2

NNLO

(Q/��)3

N3LO
(Q/��)4

N4LO
(Q/��)5

Figure 24: The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the �-full and �-less theories by showing that the contributions due to intermediate �-excitations,
expanded in powers of 1/�M , can be absorbed into a redefinition of the LECs of the �-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
⇥
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the �

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that
the NNLO 2PE potential of the �-less theory provides a very good approximation to the NNLO potential
in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the �-full theory, this term has the same mathematical form as the corresponding term in the �-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,
and stars denote vertices of index � = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is � = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (� Q0). They are
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Disadvantages:

• Increase in number of diagrams at higher 

orders; When do we stop in the chiral 
expansion? Convergence, power counting, 
etc….


• Consistency between strong- and electroweak 
sector very hard to achieve


• More LECs appearing at higher orders; 
challenging optimization problem



piN scattering NN interaction 3N interaction

some LECs in chiral EFT appear in different low energy processes

First Challenge: What experimental data should we use to find the LECs?

Static and dynamic properties of 
few- and many-body systemsScattering observables: piN, NN, NNN..

3N interaction EW interaction

cDc1 c3 c4 c1 c3 c4

How to fix the LECs?

Remaining LECs constrained to: 



Fits of NN Interactions: nucleon-nucleon scattering data
The Granada NN database is the most up to date database. The analysis includes data within the 
years 1950 to 2013.

More than 7800 elastic scattering data up to =350 MeV 
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Maximization of the experimental consensus:

Fit to all data

Apply  criterion

Refit parameters

Re-apply  criterion to all data

Repeat until no more data is excluded or 
recovered

3σ

3σ

Perez, Amaro, Arriola PRC88 (2013) 064002 


http://www.ugr.es/~amaro/nndatabase/

http://www.ugr.es/~amaro/nndatabase/


• Inclusion of 3N forces at N2LO:

c1 c3 c4 cD cE

Constrained from  
scattering or : ex. 
Hoferichter et al., Phys .Rept. 
625 (2016) 1 


πN
NN

Fits of 3N Interactions: three-body scattering cross sections 

MP et al. PRL 120, 052503 (2018)

2and =(0.645± 0.010) fm

MP et al. PRL 120, 052503 (2018)

10

a2/3 a1 a2

AV6P+UIX 27.2± 0.4 �19.1± 0.8 11.80± 0.04
AV18+UIX 30.5± 1.1 �25.7± 2.4 13.24± 0.23

TABLE III. Best-fit parameters from Eq. (41) for the AFDMC
energy per particle obtained from the AV6P+UIX and
AV18+UIX Hamiltonians.

The first generation of Norfolk NN plus 3N Hamilto-
nians, fitted on the trinucleon ground-state energies and
nd doublet scattering length, are characterized by rela-
tively large and negative values of cE , listed in Table I.
When used as inputs in the AFDMC, all the NV2+3-Ia/b
and NV2+3-IIa/b Hamiltonians yield to the “collapse” of
PNM, whose energy per particles became large — of the
order of several GeV per particle — and negative already
at saturation density. Thanks to the flexibility of our
variational ansatz, based on cubic-spline correlations, the
collapse is clearly visible already at the variational level.
On the other hand, using correlation functions deter-
mined minimizing the two-body cluster contribution to
the energy per particle, as done in our previous work [46],
prevents the collapse from happening at the VMC level.
In this latter case, PNM becomes deeply bound already
after a few time steps in the imaginary-time di↵usion.

The collapse is associated with the formation of
“droplets” of closely packed neutrons, ultimately caused
by the attractive nature of the cE term in the 3N force.
Its strength grows with the third power of the number
of particles in a droplet, and overcomes the repulsive
kinetic-energy contribution. To better illustrate this be-
havior, in Fig. 2 we display the positions of 66 neutrons
with PBC obtained from a single Metropolis step of a
variational Monte Carlo calculation for model NV2+3-
Ia. In the upper panel, the 3N force is turned o↵ and the
neutrons are distributed uniformly in the box. When the
3N is included in the Hamiltonian, the variational wave
function changes dramatically, making the neutrons form
closely-packed droplets. Note that the average density of
the system is unchanged, as the droplets move across the
box — and in fact they can enter nearby boxes so that
periodicity is enforced.

Requiring the energy per particle of PNM to be posi-
tive at ⇢ = ⇢0 yields lower bounds on cE . We find that
these limits are fairly insensitive to the value of cD —
whose impact in PNM is modest — and, more surpris-
ingly, to the specific NN interaction of choice. In fact,
taking cE & �0.1 is su�cient to avoid the collapse, for all
the NV2+3-Ia/b and NV2+3-IIa/b models. These limits
are conservative for primarily two reasons. First, we have
obtained them by simulating 66 neutrons with PBC. At
fixed density, the expectation value of the 3N force grows
a factor ⇠ N faster than the NN potential and a factor
⇠ N2 faster than the kinetic energy, where N is the num-
ber of neutrons in the box. Hence, putting more neutrons
in the box will likely increase the relative importance of

the 3N interaction, bringing the lower limits on cE closer
to zero — see Ref. [105] for a mathematical discussion on
this point. Second, here we are only imposing positive
energies per particle, neglecting constraints coming from
astrophysical observations, such as the maximum mass
of the star or its tidal deformability, which will probably
require sti↵er EOS, and hence more stringent limits on
cE .
The FHNC/SOC calculations for NV2+3-Ia/b and -

IIa/b also find these models are generally not suitable

FIG. 2. Single snapshot of a Metropolis random walk for
VMC calculations. The variational wave functions are opti-
mized with the NV2-Ia two-body force alone (upper panel)
and including the three-body force NV2+3-Ia (lower panel)
which leads to the formation of neutron droplets.

• ….. relatively large and negative 
values of : “collapse” of PNM, 
whose energy per particles became 
large (  several GeV per particle). 


•  The collapse is associated with the 
formation of “droplets” of closely 
packed neutrons, ultimately caused 
by the attractive nature of the cE 
term in the 3N force.

cE

∼

Lovato, MP et al. PRC105 (2022) 055808

Model cD cE
Ia 3.666 –1.638

Ib –2.061 –0.982

IIa 1.278 –1.029

IIb –4.480 –0.412

Spectra of light nuclei and charge radii in good agreement with data but….

a single scattering observable not too constraining (correlated with energy of )  3H

HH

AFDMC

Local chiral EFT: Model Ia



Fits of 3N Interactions: three-body scattering cross sections 
Fits of 3N LECs: 

three-body scattering cross sections

• a single scattering observable not too constraining (correlated with E3H)
• a more global fit using several observables more robust

a more global fit using several observables more robust!!  
• Inclusion of 3N forces at N2LO:

c1 c3 c4 cD cE

Constrained from  
scattering or : ex 
Hoferichter et al., Phys .Rept. 
625 (2016) 1 
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FIG. 4: (Color online) The neutron analyzing power Ay in nd elastic scattering at En = 14.1 MeV. The left panel shows
the predictions based on the phenomenological NN potentials AV18, CD Bonn, Nijm1 and Nijm2 alone (blue band) or in
combination with the TM99 3NFs (cyan band). The dashed (yellow) line is the result based on the AV18 NN potential in
combination with the Urbana IX 3NF. In the right panel, the dashed (red) line is the prediction of the N2LO SCS NN potential
with the regulator R = 0.9 fm. The (magenta) band covers the predictions obtained with this N2LO NN potential combined
with the N2LO 3NF using cD = �2.0 . . . 6.0 (and the corresponding cE values fixed from the correlation line). The (green)
band gives the estimated theoretical uncertainty at N2LO for the value of cD = 2.0. The (black) dots depict pd data from
Ref. [53].

to compare our 3N scattering predictions with pd data, we have replaced the neutron-neutron (nn) components of the
NN potential with the corresponding proton-proton (pp) ones (with the Coulomb force being subtracted). Further, in
order to provide converged results, we have solved the 3N Faddeev equations by taking into account all partial wave
states with the 2N total angular momenta up to jmax = 5 and 3N total angular momenta up to Jmax = 25/2. The
3NF was included up to Jmax = 7/2.

At low energies, the most interesting observable is the analyzing power Ay for nd elastic scattering with polarized
neutrons. Theoretical predictions of the phenomenological high-precision NN potentials such as the AV18 [12], CD-
Bonn [13], Nijm1 and Nijm2 [14] fail to explain the experimental data for Ay as visualized in Fig. 4. The data are
underestimated by ⇡ 30% in the region of the Ay maximum which corresponds to the c.m. angles of ⇥c.m. ⇡ 125�.
Combining these NN potentials with the 2⇡-exchange TM99 3NF model [54] removes approximately only half of
the discrepancy to the data (see Fig. 4). That e↵ect is, however, model dependent: if the Urbana IX 3NF model
[55] is used instead of the TM99 3NF, one observes practically no e↵ects on Ay, see the left panel of Fig. 4. The
predictions for the Ay based on the chiral NN potentials appear to be similar to those of phenomenological models,
see [22] and references therein. Combining the N2LO SCS chiral potential with the N2LO 3NF only slightly improves
the description of Ay. The behavior is qualitatively similar to the one observed for the TM99 3NF, but the e↵ect
is ⇠ 2 times smaller in magnitude. Interestingly, the theoretical predictions appear to be quite insensitive to the
actual value of cD as visualized by a rather narrow magenta band in the right panel of Fig. 4, which corresponds to
the variation of cD = �2.0 . . . 6.0. In fact, this observable is well known to be very sensitive only to 3Pj NN force
components [56], while both 3NF contact interactions act predominantly in the S-waves. On the other hand, the
theoretical uncertainty at N2LO is rather large and, in fact, comparable in magnitude with the observed deviation
between the predictions and experimental data. It would be interesting to see whether the Ay-puzzle would persist
upon inclusion of higher-order corrections to the 3NF. As for other Nd elastic scattering observables at low energy,
we found the e↵ects of the chiral 3NF at N2LO to be rather small, and the good description of the data, already
reported in Ref. [20] for the calculations based on the NN forces, remains intact after inclusion of the 3NF.

At intermediate energies, the e↵ects of the 3NF start to become more pronounced. In particular, as already discussed
in section II, the di↵erential cross section is significantly underestimated in the minimum region when calculated
based on NN forces only. The same pattern is observed in calculations based on the high-precision phenomenological
potentials as well. The improved description of Nd elastic scattering cross section data up to about 130 MeV upon
inclusion of the N2LO 3NF resembles the situation found in calculations based on phenomenological 3NFs [40, 57]
such as the TM99 [54] and Urbana IX [55] models. On the other hand, the inclusion of the available 3NFs has so far
not provided an explanation of the growing discrepancies between the cross section data and theoretical predictions
at larger energies and backward angles as exemplified in Fig. 5 for EN = 250 MeV. The astonishing similarity of
the predictions based on phenomenological models and chiral interactions can presumably be traced back to the
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to the N
ref
max = Nmax = 0 limit of the IM-NCSM for 16O

and 40Ca. Also for the doubly-magic calcium isotopes,
we observe a very nice convergence of the chiral expan-
sion for both energies and radii. As before, N2LO leads
to significant overbinding, but the higher orders stabi-
lize quickly and agree within uncertainties. Though the
ground-state energies are still in reasonable agreement
with experiment, the underestimation of the radii is even
more pronounced. For the calcium isotopes the radii at
the highest chiral orders are by about 0.5 fm too small
compared to experiment, this corresponds to a reduction
of the nuclear volume by almost 50%.

There are obvious limitations in the present calcula-
tions that might explain the systematic deviation for
radii. Starting from N3LO the 3N interaction is incom-
plete and while the additional 3N terms at N3LO do
not introduce additional LECs, the 3N terms at N4LO
come with a set of new 3N LECs. Work is in progress to
derive all 3N contributions at N3LO and N4LO [65–69]
and to compute the corresponding matrix elements in a
partial-wave representation [70]. In order to probe the
sensitivity of ground-state energies and radii to the sub-
leading three-body contributions, particularly the terms
with new LECs at N4LO, we have selectively included
the simplest, spin-isospin-independent contact term at
N4LO [67] with di↵erent values of the corresponding LEC
cE1 = �1, 0,+1 on top of the N4LO+ interaction. The re-

FIG. 14. (Color online) Ground-state energies and point-
proton radii for even oxygen isotopes obtained in the IM-
NCSM with the SMS interaction at N4LO+ for ⇤ = 450 MeV,
supplemented by the E1 three-nucleon contact term at N4LO
with LEC values cE1 = 0, ±1.

sulting ground-state energies and radii for the oxygen iso-
topes obtained in the IM-NCSM are depicted in Fig. 14.
Clearly, these higher-order terms have the potential to
significantly a↵ect energies and radii. It remains to be
seen whether the consistent inclusion of all terms will al-
low for a net change in the radii while keeping the good
reproduction of the ground-state energies.

Another limitation are the missing corrections to the
charge density from exchange terms predicted in chiral
EFT. We are working on the consistent inclusion of these
corrections to the charge densities and to the charge ra-
dius.

V. SUMMARY AND CONCLUSIONS

In this paper we have extended our earlier study [27]
of few-nucleon systems based on the SMS NN potentials
along with the consistently regularized N2LO 3NF by
considering a broader range of Nd scattering observables
and heavier nuclei up to 48Ca. We have also studied
the role of higher-order corrections to the NN interac-
tion in connection with the systematic overbinding trend
for A & 10 nuclei found in our earlier paper using the
SMS N2LO NN potentials [27]. To quantify the contri-
butions of the NN interactions beyond N2LO to various
observables, we performed a series of additional calcu-
lations using the SMS NN potentials at N3LO, N4LO

IM-NCSM IM-SRG
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of the Entem and Machleidt (momentum-space) 2N in-
teractions at N3LO [38, 39] and the Epelbaum et al. 3N
interactions at LO [21] (i.e., the TPE piece proportional
to c1, c3, and c4, and the cD and cE contact terms). In
that work, �-isobar degrees of freedom were included im-
plicitly, as reflected by the much larger values (in mag-
nitude) considered for the LECs c3 and c4. We found
in Ref. [12] the N3LO(OPE) contribution to be 0.0082
(0.00043) or 0.0579 (0.0652) with the momentum-space
cuto↵ ⇤=500 (600) MeV depending on which c3-c4 set
was used, either the values reported by Entem and Mach-
leidt [39] in the first case or the recent determinations
by Hoferichter and collaborators [40] in the second case.
Here, we obtain values in the range 0.073–0.104, the lower
(upper) limit corresponding to models a (b). As we noted
in Ref. [12], there are cancellations between the individ-
ual terms proportional to c3 and c4, which make their
sum very sensitive to the actual values adopted for these
LECs. Nevertheless, it would appear that the present
results are close to those obtained in that work with the
c3 and c4 values from Ref. [40].

The magnitude (and sign) of the N3LO(CT) contribu-
tion results from the product of the matrix element

X

ij

h3He| e�z2
ij (⌧i ⇥ ⌧j)+ (�i ⇥ �j)z |

3Hi < 0 , (3.1)

and magnitude and sign of the LEC z0, which is propor-
tional to

z0 / � m⇡

4 gA ⇤�
cD +

m⇡

3
(c3 + 2 c4) +

m⇡

6m

' 0.1105� 0.0271 cD . (3.2)

For the cD values corresponding to the interactions
NV2+3-Ia/b and NV2+3-IIa/b, we find that the
N3LO(CT) contribution is negative overall. Because of
the cancellation in z0 between the constant term and the
term proportional to cD in Eq. (3.2), its magnitude is
accidentally very small for model Ia.

Ia Ib IIa IIb
CT1 �0.0036 �0.0487 �0.0249 �0.0668
CT2 �0.0037 �0.0493 �0.0252 �0.0677
CT3 �0.0036 �0.0487 �0.0249 �0.0669
CT4 �0.0036 �0.0482 �0.0246 �0.0660

TABLE II. Contributions of four di↵erent parameterizations
of the contact axial current to the GT matrix element in tri-
tium. The first row is the same as listed in Table I.

The N3LO(CT) contribution is only very marginally
a↵ected by the operator structure adopted for the contact
axial current, more specifically

jN3LO

5,+ (CT1) = z0
e�z2

ij

⇡3/2
(⌧i ⇥ ⌧j)+ (�i ⇥ �j) , (3.3)

jN3LO

5,+ (CT2) = 4 z0
e�z2

ij

⇡3/2
(�i ⌧i,+ + �j ⌧j,+) , (3.4)

jN3LO

5,+ (CT3) = 2 z0
e�z2

ij

⇡3/2
(�i � �j) (⌧i,+ � ⌧j,+) , (3.5)

jN3LO

5,+ (CT4) = �4 z0
e�z2

ij

⇡3/2
(�i ⌧j,+ + �j ⌧i,+) , (3.6)

where the isospin-raising operators are defined as in
Eq. (2.23). These structures, which are Fierz-equivalent
in the absence of the cuto↵, are no longer so when the
latter is included. The contributions corresponding to
the set above are reported in Table II.

IV. REFITTING cD WITH LOCAL CHIRAL
INTERACTIONS

In this section, we determine the LECs cD and cE in
the three-nucleon contact interaction, as parametrized in
Ref. [23], by fitting the experimental trinucleon binding
energies and central value of the 3H GT matrix element.
We designate these new LECs as c

⇤
D and c

⇤
E . The fit is

carried out as in Ref. [12, 41]. We span a broad range
of values in cD, and, in correspondence to each cD in
this range, determine cE so as to reproduce the binding
energy of either 3H or 3He. The resulting trajectories
are nearly indistinguishable [12, 41]. Then, for each set
of (cD, cE), the triton and 3He wave functions are cal-
culated and the GT matrix element, denoted as GTth,
is obtained, by including in the axial current contribu-
tions up to N3LO. The ratio GTth/GTexp for the case of
the NV2+3-Ia interactions is shown in Fig. 2 (left panel),
where the band reflects the uncertainty resulting from the
experimental error on GTexp, which, conservatively, has
been doubled. The LECs (c⇤D, c

⇤
E) that reproduce GTexp

(its central value) and the trinucleon binding energies
are reported in Table III, along with the axial current
contributions at LO, N2LO, and N3LO. In Table IV, we
provide the range of (c⇤D, c

⇤
E) values compatible with the

experimental error on GTexp. The 3N interactions cor-
responding to the new set of (c⇤D, c

⇤
E) are denoted with ⇤

hereafter.

Ia⇤ Ib⇤ IIa⇤ IIb⇤

c⇤D �0.635 �4.71 �0.61 �5.25
c⇤E �0.09 0.55 �0.35 0.05

LO 0.9272 0.9247 0.9261 0.9263
N2LO 0.0345 0.0517 0.0345 0.0515
N3LO(OPE) 0.0327 0.0454 0.0330 0.0465
N3LO(CT) �0.0435 �0.0715 �0.0432 �0.0737

TABLE III. The values c⇤D and c⇤E obtained by fitting the
experimental trinucleon binding energies and central value of
the 3H GT matrix element with chiral axial currents up to
N3LO and HH wave functions corresponding to the NV2+3-
Ia⇤/b⇤ and NV2+3-IIa⇤/b⇤ chiral Hamiltonians. Also re-
ported are the contributions at LO, N2LO, N3LO(OPE), and
N3LO(CT).
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Fits of 3N Interactions: nuclear matter saturation point  
4

FIG. 3. Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and 3N interactions
at N2LO and N3LO. The points are for di↵erent values of cD (annotated numbers; cE follows from Fig. 1 of the Supplemental
Material [45]), while the red-dotted, green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth
order in MBPT. The left (right) two panels are for N2LO (N3LO) with ⇤ = 450 and 500MeV. The diamonds in each panel
represent the calculations with a simultaneous good reproduction of both saturation density and energy at fourth order.

As a second step, we calculate nuclear matter for the
range of 3N couplings and determine the saturation point.
In Fig. 3, we present the saturation points at N2LO and
N3LO as a function of cD and at di↵erent orders in MBPT.
Similar to the interactions shown in Fig. 2, we find a nat-
ural convergence pattern. Note that the shown points
on the trajectories correspond to di↵erent cD values at
second order compared to third and fourth order. Con-
tributions at third order are therefore more significant in
these cases, whereas fourth-order corrections are again
much smaller as is shown in Table I (the convergence at
fixed densities is documented in Table I of the Supplemen-
tal Material [45]). In general, Fig. 3 demonstrates that
it is possible to determine natural cD/cE combinations
at N2LO and N3LO with good saturation properties for
both cuto↵ cases considered. However, N3LO contribu-
tions provide slightly too much repulsion.
In each panel of Fig. 3, we mark the three couplings

that provide a good fit to the saturation region by black
diamonds, with annotated cD values (the corresponding
cE values are given in Fig. 1 of the Supplemental Mate-
rial [45]). The resulting equations of state of symmetric
nuclear matter and neutron matter at N2LO and N3LO
are shown in Fig. 4. Note that only two lines are present
in neutron matter since the shorter-range 3N interactions
do not contribute [25]. We also calculate the Hartree-
Fock energy of the N3LO 4N forces using the nonlocal
regulator as in Ref. [18]. These forces are long range and
free of unknown parameters [39, 40]. The obtained 4N
Hartree-Fock energies at n0 are ⇡ �(150 � 200) keV in
neutron matter as well as symmetric matter, in agree-
ment with the results of Ref. [18]. As for the Hebeler+
and NNLOsim results, the symmetry energy and the L
parameter are predicted with a remarkably narrow range.
In symmetric matter, we also observe a weak cuto↵ de-
pendence at N3LO, whereas the results for ⇤ = 450MeV

FIG. 4. Energy per particle in neutron matter (top row) and
symmetric nuclear matter (bottom row) based on chiral inter-
actions at N2LO (first column) and N3LO (second column) fit
to the empirical saturation region (see Fig. 3). The fits are
labeled by ⇤/cD in the legend. The blue (⇤ = 450 MeV) and
gray (⇤ = 500 MeV) bands estimate the theoretical uncer-
tainty following Ref. [42]. Note that the annotated results for
Esym and L do not include this uncertainty.

are clearly separated from ⇤ = 500MeV at N2LO, with
the former achieving the best fits to the saturation region.

•  Use nuclear matter saturation 
energy and density to constrain 
LECs 

•  Reasonable reproduction of 
both quantities possible

•  Results for medium-mass nuclei 
still not satisfactory 

Hoppe et al. PRC 100, 024318 (2019) 


• Inclusion of 3N forces at N2LO and N3LO:

cD cE

Drischler et al., PRL 122 (2019) 042501 

(Thursday plenary session)

MBPT

Determination of LECs:
From nuclear matter saturation point

Drischler et al., PRL 122 (2019) 042501

Hoppe et al.
PRC 100, 024318 (2019)

Determination of LECs:
From nuclear matter saturation point

Drischler et al., PRL 122 (2019) 042501

Hoppe et al.
PRC 100, 024318 (2019)

IM-SRG IM-SRG

+ pions exchange diagrams



Fits of 3N Interactions: g.s. energies of nuclei

• Inclusion of 3N forces at N2LO and N3LO:

cD cE3N fitted to 3H and 16O g.s. energies

Huther et al., PLB 808, 135651 (2020)

Sammarruca et al., PRC 102, 034313 (2020)

4

FIG. 1: (Color online) Energy per particle in SNM as a function of density. Left side: All calculations include the 2NF and
the 3NF at N2LO. The upper (red) curves apply the cD, cE from Ref. [10] (case (b)), whereas the lower (green) curves use the
cD, cE from Ref. [21]. Right: same as left side, but with the 2NF and the 3NF at N3LO. Concerning the values for the cD, cE
LECs applied in the 3NF, see Table I.

The large sensitivity of the cD, cE LECs to the systems/properties used to constrain their values, apparent from
Table I, is just another way to state the same puzzle. In an e↵ort to shed more light on this interesting question,
we calculate the EoS for the individual 3NF contributions, shown in Fig. 3. Since the problem we are discussing is
apparently independent of whether the calculations are conducted at third or fourth order of the chiral expansion or
the value of the cuto↵, we choose N2LO with ⇤=450 MeV as our demonstration case.

In Fig. 3, we start from a baseline EoS with only the 2NF, curve (1), and then add 3NF contributions one by one.
Curves (2) to (4) are obtained by including the contributions proportional to c1 (curve (2)), c1 and c3 (curve (3)), c1,
c3, and c4 (curve (4)). The curve labeled (5) includes, in addition, the contributions proportional to cD, while curve
(6) contains all 3NF contributions at N2LO (i. e., also the cE contribution). Contributions are added up succesively.
For (5) and (6), the values for (cD, cE) are those of Ref. [10] (case (b)). The curves labeled (7) and (8) are obtained
with the (cD, cE) 3NF couplings used in Ref. [21] (solid green curve in Fig. 1, left side).

From Fig. 3, we see that the term proportional to c1 is small and repulsive, and that the c3-contribution provides
a hint of saturation. The c4-term is instrumental for saturation, while both cD and cE add attraction.

The figure also confirms that the large value of cD applied for curve (7) is responsible for the non-saturating
behavior. As both sets of 3NF couplings applied in curves (5) and (6) vs. (7) and (8) are consistent with the triton
binding energy, one may conclude that cD has a much larger impact in nuclear matter than in the three-nucleon
system, confirming the observation in Ref. [22].

IV. ELUCIDATING THE CONNECTION BETWEEN NUCLEAR MATTER AND FINITE NUCLEI

In the previous section, we have confirmed that, when cD, cE are determined through the ground-state energy of a
nucleus such as 16O, the resulting values produce way too much attraction in saturated SNM, a system with density
approximately equal to 0.16 fm�3. Vice versa, values constrained by the saturation properties of SNM underbind 16O.
This “mismatch” [21], while not understood, may be seen as an indication that the chiral 3NF operates di↵erently
for systems with di↵erent densities or density distributions.

An intuitive picture, established in nuclear physics since decades, describes a nucleus in terms of a mass formula,
whose extrapolation to an infinite electrically neutral system is known as nuclear matter. Although simple, this model
should not be fundamentally wrong, especially for bulk properties such as energies and r.m.s. radii, namely averaged
values rather than quantum structures.

BHF

Constraints from the few-nucleon 
system and a relatively light nucleus 
such as  produce chiral 
interactions which are excessively 
attractive when applied in nuclear 
matter showing no sign of saturation. 


16O

A good reproduction of both experimental 
energies and radii from p-shell nuclei up 
to the nickel isotopes within theoretical 
uncertainties


IM-SRG
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Figure 3. Ground-state energies (top panels) and point-proton rms radii (bottom panels) obtained in IM-SRG calculations for the NLO (solid
gray diamonds), N2LO (blue circles), N3LO (red boxes), and N3LO’ (open green boxes) interactions with ⇤ = 450 MeV (left), 500 MeV
(center), and 550 MeV (right). The error bands for N2LO (blue) and N3LO (red) are derived from the order-by-order behavior and include the
many-body uncertainties (see text). Experimental data is indicated by black bars [5, 36, 37].

Table I. Values of the 3N low-energy constants obtained from con-
sidering the 16O ground-state energy. The values for the two-
pion LECs are (c1, c3, c4) = (�0.74,�3.61, 2.44) GeV�1 for N2LO,
(�1.20,�4.43, 2.67) GeV�1 for N3LO, (�1.07,�5.32, 3.56) GeV�1

for N3LO’, taken from [23]. We use isospin-averaged values for CS =
(�4.60,�4.78,�4.56) fm2 and CT = (�0.010,�0.163,�0.069) fm2

for the three cuto↵s (450, 500, 550) MeV.

⇤ [MeV] cD cE E(4He) [MeV] Rrms(4He) [fm]
N2LO 450 10.0 0.909 -29.46 1.498
N3LO 450 9.0 -0.152 -29.05 1.475
N3LO’ 450 9.0 0.544 -29.50 1.499
N2LO 500 5.0 -0.159 -29.42 1.475
N3LO 500 4.0 -1.492 -29.12 1.453
N3LO’ 500 4.0 -1.481 -29.41 1.497
N2LO 550 2.0 -0.966 -29.45 1.459
N3LO 550 3.0 -1.745 -29.60 1.437
N3LO’ 550 1.0 -3.412 -29.64 1.477

the radii are practically independent of cD and in remarkable
agreement with experiment in all cases.

We emphasize that there is a clear mismatch between the
optimal cD values extracted from few-body systems, medium-
mass nuclei, and nuclear-matter saturation. Using the 4He en-
ergy and radius as a guideline (cf. red lines in Fig. 1), we
would arrive at cD ⇡ 2 corresponding to the green symbols in
Fig. 2. The nuclear-matter studies reported in Ref. [21] extract
cD ⇡ �3 from the saturation behaviour for the N3LO interac-
tion with the same cuto↵, but for a regulator with n = 4. This
value leads to a significant underbinding of medium-mass nu-
clei, as was also shown in Ref. [24]. Understanding the ap-
parent discrepancy between nuclear matter and medium-mass

nuclei will be an important task for future studies.
Selecting cD in Many-Body Systems. We have repeated

the above analysis for the N2LO and N3LO interactions with
all three cuto↵ values and we always find the same basic be-
havior discussed in Fig. 2. We can select an optimal cD for
each chiral order and cuto↵, such that the ground-state energy
of 16O is reproduced in simple IM-SRG calculations. Note
that we only consider integer values for cD for this selection.
Given the limited accuracy of the many-body scheme used in
this step, we do not attempt a rigorous fit. The resulting val-
ues for the low-energy constants are summarized in Tab. I. In
addition to the interactions with consistent chiral orders in the
NN and 3N sector, denoted by N2LO and N3LO, we also con-
sidered the case of NN interactions at N3LO combined with
3N interaction at N2LO, denoted by N3LO’. The optimal cD
values show two interesting systematics: (i) they are similar
for all di↵erent orders with a fixed cuto↵, (ii) they are rather
large for the smallest cuto↵ but decrease systematically with
increasing cuto↵. Table I also reports the ground-state energy
and radius of 4He obtained with the respective interactions.

Medium-Mass Nuclei and Uncertainties. Based on this
set of interactions we can address the various sources of the-
ory uncertainties. There is already some experience in assess-
ing the uncertainties of the many-body method itself. Vari-
ous comparisons of di↵erent many-body methods for a fixed
SRG-evolved Hamiltonian, e.g. in Refs. [14, 38–40], typically
indicated an uncertainty of 1–2%, e.g., due to the restriction to
normal-ordered two-body terms in the IM-SRG formulation.
Additional uncertainties due to the free-space SRG evolution
and the model space truncations can be shown to be small.
Combining all of these e↵ects, we estimate the many-body
uncertainties to be on the order of 2%.

More significant are the uncertainties resulting from the
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Figure 3. Ground-state energies (top panels) and point-proton rms radii (bottom panels) obtained in IM-SRG calculations for the NLO (solid
gray diamonds), N2LO (blue circles), N3LO (red boxes), and N3LO’ (open green boxes) interactions with ⇤ = 450 MeV (left), 500 MeV
(center), and 550 MeV (right). The error bands for N2LO (blue) and N3LO (red) are derived from the order-by-order behavior and include the
many-body uncertainties (see text). Experimental data is indicated by black bars [5, 36, 37].

Table I. Values of the 3N low-energy constants obtained from con-
sidering the 16O ground-state energy. The values for the two-
pion LECs are (c1, c3, c4) = (�0.74,�3.61, 2.44) GeV�1 for N2LO,
(�1.20,�4.43, 2.67) GeV�1 for N3LO, (�1.07,�5.32, 3.56) GeV�1

for N3LO’, taken from [23]. We use isospin-averaged values for CS =
(�4.60,�4.78,�4.56) fm2 and CT = (�0.010,�0.163,�0.069) fm2

for the three cuto↵s (450, 500, 550) MeV.

⇤ [MeV] cD cE E(4He) [MeV] Rrms(4He) [fm]
N2LO 450 10.0 0.909 -29.46 1.498
N3LO 450 9.0 -0.152 -29.05 1.475
N3LO’ 450 9.0 0.544 -29.50 1.499
N2LO 500 5.0 -0.159 -29.42 1.475
N3LO 500 4.0 -1.492 -29.12 1.453
N3LO’ 500 4.0 -1.481 -29.41 1.497
N2LO 550 2.0 -0.966 -29.45 1.459
N3LO 550 3.0 -1.745 -29.60 1.437
N3LO’ 550 1.0 -3.412 -29.64 1.477

the radii are practically independent of cD and in remarkable
agreement with experiment in all cases.

We emphasize that there is a clear mismatch between the
optimal cD values extracted from few-body systems, medium-
mass nuclei, and nuclear-matter saturation. Using the 4He en-
ergy and radius as a guideline (cf. red lines in Fig. 1), we
would arrive at cD ⇡ 2 corresponding to the green symbols in
Fig. 2. The nuclear-matter studies reported in Ref. [21] extract
cD ⇡ �3 from the saturation behaviour for the N3LO interac-
tion with the same cuto↵, but for a regulator with n = 4. This
value leads to a significant underbinding of medium-mass nu-
clei, as was also shown in Ref. [24]. Understanding the ap-
parent discrepancy between nuclear matter and medium-mass

nuclei will be an important task for future studies.
Selecting cD in Many-Body Systems. We have repeated

the above analysis for the N2LO and N3LO interactions with
all three cuto↵ values and we always find the same basic be-
havior discussed in Fig. 2. We can select an optimal cD for
each chiral order and cuto↵, such that the ground-state energy
of 16O is reproduced in simple IM-SRG calculations. Note
that we only consider integer values for cD for this selection.
Given the limited accuracy of the many-body scheme used in
this step, we do not attempt a rigorous fit. The resulting val-
ues for the low-energy constants are summarized in Tab. I. In
addition to the interactions with consistent chiral orders in the
NN and 3N sector, denoted by N2LO and N3LO, we also con-
sidered the case of NN interactions at N3LO combined with
3N interaction at N2LO, denoted by N3LO’. The optimal cD
values show two interesting systematics: (i) they are similar
for all di↵erent orders with a fixed cuto↵, (ii) they are rather
large for the smallest cuto↵ but decrease systematically with
increasing cuto↵. Table I also reports the ground-state energy
and radius of 4He obtained with the respective interactions.

Medium-Mass Nuclei and Uncertainties. Based on this
set of interactions we can address the various sources of the-
ory uncertainties. There is already some experience in assess-
ing the uncertainties of the many-body method itself. Vari-
ous comparisons of di↵erent many-body methods for a fixed
SRG-evolved Hamiltonian, e.g. in Refs. [14, 38–40], typically
indicated an uncertainty of 1–2%, e.g., due to the restriction to
normal-ordered two-body terms in the IM-SRG formulation.
Additional uncertainties due to the free-space SRG evolution
and the model space truncations can be shown to be small.
Combining all of these e↵ects, we estimate the many-body
uncertainties to be on the order of 2%.

More significant are the uncertainties resulting from the

3

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

�/
�

[�
��

]

-��

-�

-�

-�

-�

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

� �
���
�
[��

]

�

���

�

���

�

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

��� ��� ���� ���� ���� ���� ���� ���� ���� 	���

Λ = 450 MeV Λ = 500 MeV Λ = 550 MeV

Figure 3. Ground-state energies (top panels) and point-proton rms radii (bottom panels) obtained in IM-SRG calculations for the NLO (solid
gray diamonds), N2LO (blue circles), N3LO (red boxes), and N3LO’ (open green boxes) interactions with ⇤ = 450 MeV (left), 500 MeV
(center), and 550 MeV (right). The error bands for N2LO (blue) and N3LO (red) are derived from the order-by-order behavior and include the
many-body uncertainties (see text). Experimental data is indicated by black bars [5, 36, 37].

Table I. Values of the 3N low-energy constants obtained from con-
sidering the 16O ground-state energy. The values for the two-
pion LECs are (c1, c3, c4) = (�0.74,�3.61, 2.44) GeV�1 for N2LO,
(�1.20,�4.43, 2.67) GeV�1 for N3LO, (�1.07,�5.32, 3.56) GeV�1

for N3LO’, taken from [23]. We use isospin-averaged values for CS =
(�4.60,�4.78,�4.56) fm2 and CT = (�0.010,�0.163,�0.069) fm2

for the three cuto↵s (450, 500, 550) MeV.

⇤ [MeV] cD cE E(4He) [MeV] Rrms(4He) [fm]
N2LO 450 10.0 0.909 -29.46 1.498
N3LO 450 9.0 -0.152 -29.05 1.475
N3LO’ 450 9.0 0.544 -29.50 1.499
N2LO 500 5.0 -0.159 -29.42 1.475
N3LO 500 4.0 -1.492 -29.12 1.453
N3LO’ 500 4.0 -1.481 -29.41 1.497
N2LO 550 2.0 -0.966 -29.45 1.459
N3LO 550 3.0 -1.745 -29.60 1.437
N3LO’ 550 1.0 -3.412 -29.64 1.477

the radii are practically independent of cD and in remarkable
agreement with experiment in all cases.

We emphasize that there is a clear mismatch between the
optimal cD values extracted from few-body systems, medium-
mass nuclei, and nuclear-matter saturation. Using the 4He en-
ergy and radius as a guideline (cf. red lines in Fig. 1), we
would arrive at cD ⇡ 2 corresponding to the green symbols in
Fig. 2. The nuclear-matter studies reported in Ref. [21] extract
cD ⇡ �3 from the saturation behaviour for the N3LO interac-
tion with the same cuto↵, but for a regulator with n = 4. This
value leads to a significant underbinding of medium-mass nu-
clei, as was also shown in Ref. [24]. Understanding the ap-
parent discrepancy between nuclear matter and medium-mass

nuclei will be an important task for future studies.
Selecting cD in Many-Body Systems. We have repeated

the above analysis for the N2LO and N3LO interactions with
all three cuto↵ values and we always find the same basic be-
havior discussed in Fig. 2. We can select an optimal cD for
each chiral order and cuto↵, such that the ground-state energy
of 16O is reproduced in simple IM-SRG calculations. Note
that we only consider integer values for cD for this selection.
Given the limited accuracy of the many-body scheme used in
this step, we do not attempt a rigorous fit. The resulting val-
ues for the low-energy constants are summarized in Tab. I. In
addition to the interactions with consistent chiral orders in the
NN and 3N sector, denoted by N2LO and N3LO, we also con-
sidered the case of NN interactions at N3LO combined with
3N interaction at N2LO, denoted by N3LO’. The optimal cD
values show two interesting systematics: (i) they are similar
for all di↵erent orders with a fixed cuto↵, (ii) they are rather
large for the smallest cuto↵ but decrease systematically with
increasing cuto↵. Table I also reports the ground-state energy
and radius of 4He obtained with the respective interactions.

Medium-Mass Nuclei and Uncertainties. Based on this
set of interactions we can address the various sources of the-
ory uncertainties. There is already some experience in assess-
ing the uncertainties of the many-body method itself. Vari-
ous comparisons of di↵erent many-body methods for a fixed
SRG-evolved Hamiltonian, e.g. in Refs. [14, 38–40], typically
indicated an uncertainty of 1–2%, e.g., due to the restriction to
normal-ordered two-body terms in the IM-SRG formulation.
Additional uncertainties due to the free-space SRG evolution
and the model space truncations can be shown to be small.
Combining all of these e↵ects, we estimate the many-body
uncertainties to be on the order of 2%.

More significant are the uncertainties resulting from the

IM-SRG



“Traditional” approach: separate fits A “more modern” approach: simultaneous fits

Second Challenge: What is the best fitting procedure?

Heavier nuclei: A>12

NN

piN

Light nuclei, A=2,3,4

o B. Carlsson et al., Phys. Rev. X, 
011019, 2015 (NNLOsim)

o D. R. Entem et al., Phys. Rev. C 96, 024004 2017

o A. Gezerlis et al., Phys.Rev. C 90, 054323 2014

o M. Piarulli et al., Phys. Rev. C, 024003 2015

o E. Epelbaum et al., Eur. Phys. J. A 51, 53 2015

o P. Reinert et al., Eur.Phys.J. A54 no.5, 86 2018

o Ekström et al.  Phys. Rev. Lett. 110, 192502 2013 (NNLOopt)

o Ekström et al. Phys. Rev. C 97, 024332 2018

o B. Carlsson et al., Phys. Rev. X, 011019 2015 (NNLOsep)

o …..

o A. Ekström et al., J. Phys. G 
42, 034003 2015 (NNLOsat)

Computationally a very challenging problem!

How to fix the LECs?

NN

piN

Light nuclei, A=2,3,4

Or

• Indications that simultaneous fits lead to 
more systematic EFT convergence 


• Results for heavier systems not 
consistent with experimental results 


• Good results for for  even though 
the fit included information up to 
oxygen.


• But NN scattering data included only up 
to 35 MeV 

40Ca

ELAB



Third Challenge: What is the best optimization scheme to find a* (LECs) in the parameter space?

Least-square objective function for a set of observables 

a⇤ = min
a

�2(a) �2(a) =
NdataX

i=1

⇣oi � ti(a)

�oi

⌘2

with

“Conventional” least-square minimization: Bayesian parameter estimation:

• Assumptions are made explicit (e.g. 
naturalness of LECs, truncation errors)

pr(a|Data, I)/ pr(Data|a, I)⇥ pr(a|I)

posterior likelihood prior
/ e��2(a)/2

} } }

• Many optimization techniques suitable 
for this problem such as POUNDers, 
Newtons Methods,….

• Take  to be the experimental error (or 
same modification to take into account  
theoretical errors) 

δoi

• UQ addressed as: Covariance methods, 
Bootstrapping, standard protocols for 
chiral truncation errors, cutoff 
dependence

• over/under-fitting parameter ,..

•  Parameter estimation: conventional 
optimization recovered as special case
• Clear prescriptions for combining errors

• Particularly well suited for (any) EFT, 
but generally suited for theory errors

Optimization procedure for the LECs

BAND collaboration
BUQEYE collaboration

https://bandframework.github.io/#:~:text=The%20Bayesian%20Analysis%20of%20Nuclear,predictions%20of%20any%20individual%20model.
https://buqeye.github.io/


Emulation of observable calculations

Ozge Surer Matt PlumleeStefan Wild

- Likelihood calculation respect to NN data relatively expensive

 Serial likelihood calculation -> slow propagation

- Improvement route: Parallel likelihood calculation

Upsides:

Downsides:

✓ Quicker propagation

✓ Ability to leverage more resources

✤ Inefficiencies due to MPI overhead and 
need for non-computing master 
processes

Jason Bub
Summer 2022 
BAND Fellowship

• A full Bayesian treatment requires millions of (MCMC) samples:

-  Use surmise from BAND Collaboration


-  Easier to emulate residuals than observables

• Solution: Emulation

Challenge:

Opportunity:



Steps for emulation:

• Generate training dataset

• Start with POUNDerS 

optimization

• Train Gaussian Process 

emulator

• Validate emulator


Promising steps at NLO

Emulator results: pionless EFT

Preliminary!!!

Bub, MP et al in progress

Jason Bub
Summer 2022 
BAND Fellowship



Emulation: How To

We can validate the emulator by comparing 
emulated value to simulated value.


At NLO, emulator performs quite well.


For N3LO, the parameter space is larger, 
requiring more thought in training point 
generation. 

• Multiple POUNDerS trajectories?

• …..???

Work in progress!!!

Preliminary!!!

Preliminary!!!

Challenge:

Jason Bub
Summer 2022 
BAND Fellowship



Full Bayesian truncation error

• To move to a full Bayesian approach, we include (uncorrelated) theoretical 
errors, see arXiv:2104.04441


where


and   sets the scale of the correction for observable , and  sets the 
magnitude of the correction. 

yref,i yi c̄

χ2 = ∑
i

(yi − ti)2

σ2
exp,i

→ χ2 = ∑
i

(yi − ti)2

σ2
exp,i + σ2

ther,i

σ2
ther,i =

(yref,i c̄ Qn+1
i )2

1 − Q2
i

, Qi =
pi

Λb ∼ mπ

Dick Furnstahl Daniel Phillips

Summer 2022 
BAND Fellowship

Jason Bub

Bub, MP et al in progress



LEC dependance on max fitting energy: pionless EFT

First step: Investigate how LECs 
change depending on max fitting 
energy at NLO


• No theory errors and 
uncorrelated theory errors have 
some differing dependance.


• Dependence should be 
resolved by correlations: 
correlated theory errors next!

Summer 2022 
BAND Fellowship

Jason Bub

Preliminary!!!



Summary:
•(Progress): Tremendous progress in ab-initio theory: algorithms and interactions


- increased algorithm efficiency, 

- new algorithms (hybrid), 

- successful algorithm benchmarks,

- advent of EFTs and UQ

•(Progress): Possibility to perform consistent calculations for nuclei and infinite matter, 
connecting nuclei observables to astrophysical quantities and observations   

•(Needs): New protocols to build realistic nuclear interactions: 

         which observables to use? In which mass range?

         Bayesian tools and UQ

         improvements in the formulation of the 3NFs

•(Needs): A deeper and more quantitative understanding of the connection between properties of 
matter and finite nuclei is needed
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• FRIB Theory Alliance DE-SC0013617, Neutrino Theory Network

• Computational resources awarded by the DOE: 2019 (PI: Pastore), 2020 (PI: Piarulli), 

2021 (PI: Lovato), 2022 (PI: Rocco) ALCC and INCITE (PI: Hagen) programs      
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