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The first term consists of an expansion over the no-core
shell model (NCSM) eigenstates of the compound system
jAλJπTi (here 11Be) indexed by λ. These states are
expanded in a finite harmonic oscillator basis, and thus
well suited to cover the localized correlations of the A-body
system, but are inappropriate to describe clustering and
scattering properties. The latter properties are addressed by
the second term corresponding to an expansion over the
antisymmetrized cluster channels AνjΦJπT

νr i [20], which
describe the two clusters (here nþ 10Be) in relative motion.
Here r denotes the relative distance of the clusters, and ν is
a collective index for the relevant quantum numbers. The
expansion coefficients cJ

πT
λ and the continuous relative-

motion amplitudes γJ
πT

ν ðrÞ are obtained as a solution of the
generalized eigenvalue problem derived by representing the
Schrödinger equation in the model space of expansion (1)
as detailed in Refs. [20,22,23]. The resulting NCSMC
equations are solved by the coupled-channel R -matrix
method on a Lagrange mesh [32–34]. The resonance
energies and widths are deduced from the complex poles
of the S matrix, via the R -matrix approach extended to
complex energies and momenta [35,36].
The inclusion of the 3N force is computationally highly

demanding and restricts the current application range of the
NCSMC. For nuclei with A > 5, we rely on an on-the-fly
computing of the uncoupled densities discussed in Ref. [37].
The present NCSMC calculations are performed including
the first three eigenstates (0þ, 2þ1 , 2

þ
2 ) of the

10Be target,
entering the cluster states in (1) and at least the first four
negative- and three positive-parity eigenstates of 11Be. Such
eigenstates are obtained within the NCSM, except in the
largest model spaces where, to reduce the dimension of the
problem, we use the importance-truncated NCSM [38,39].
Analysis of spectroscopy.—We start by using an inter-

action and parameter set established in numerous studies
[28,37,40–42] and investigate the convergence with respect
to the model-space sizeNmax. We use the traditionally fitted
chiral interaction where we choose the cutoff in the 3N
regularization to be Λ3N ¼ 400 MeV, indicated by
NN þ 3Nð400Þ. To accelerate the convergence of the
many-body approach, the interactions are softened via
the similarity renormalization group (SRG) [43–45] as
described in Refs. [28,42] (see Supplemental Material for
details [46]). Note that both the SRG-induced and initial 3N
forces are treated explicitly at all steps of the calculations.
Without continuum effects, i.e., using the conventional

NCSM, a converged 11Be spectrum cannot be obtained
within accessible model spaces as demonstrated in Fig. 1.
All states are unbound with respect to the nþ 10Be
threshold. The positive-parity states converge especially
slowly; their excitation energy is too high compared to the
experiment. Once continuum effects are taken into account
through the inclusion of the nþ 10Be cluster states in the
model space, the convergence improves drastically, even
though the computed threshold energy of nþ 10Be is not

fully converged, yet. At Nmax ¼ 9, this energy is
−58.4 MeV and increases by 2.3 and 6.2 MeV for the
Nmax ¼ 7 and 5 model spaces, respectively. The extrapo-
lated value of −60.9ð10Þ MeV is underbound with respect
to the experimental energy of −64.976 MeV [3]. For the
negative parity, the NCSMC achieves an overall quite
reasonable description, especially for the three lowest
states. On the other hand, the 1=2þ state is barely bound
and the parity inversion of the bound states is not
reproduced. Similarly, the 3=2−1 and 5=2þ states are
inverted compared to the experiment. The 3=2−2 excitation
energy is about 2 MeV larger than the experimental one.
Other decay channels (and hence cluster states) presently
not included may play a role at such high energies.
We first analyze the sensitivity of the spectrum to the 3N

interaction in Fig. 2. From left to right, we use exclusively the
chiral NN interaction (including SRG-induced 3N contribu-
tions), the 3N interaction with a 500MeV cutoff, where parts
of the two-pion exchange contribution are suppressed
(c3 ¼ 0), and the full 3N contributions using the cutoffs
Λ3N ¼ 500, 450, 400, and 350 MeV as introduced in
Ref. [28]. The illustrated spectra are expected to show a
similar convergence pattern as in the case of the NN þ
3Nð400Þ interaction. The omitted SRG-induced beyond-3N
contributions are expected to impact the 11Be spectrum only
for the NN þ 3Nð500Þ interaction, while the remaining
spectra are anticipated to be unaffected [27,28,42]. We find
the two-pion exchange term to cause the dominant 3N effects
in the 11Be spectrum. The 3N interactions generally increase
the excitation energies of both 3=2− resonances, correspond-
ing to the increase in excitation energyof the2þ states in 10Be.
Neither the inversion of the 1=2þ and 1=2− states nor that of
the 3=2−1 and 5=2

þ states can be explained by the adopted 3N
force versions. Decreasing the 3N cutoff initially reduces the

FIG. 1. Spectrum of 11Be with respect to the nþ 10Be thresh-
old. The NCSM (left) and NCSMC (right) calculations are carried
out for different model-space sizes (Nmax ¼ 5, 7, 9). Light boxes
of experimental and NCSMC spectra indicate resonance widths.
Experimental energies are taken from Ref. [1]. See the text and
Supplemental Material for details of the calculations [46].
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Results.— Our results for the charge radii of magne-
sium isotopes are shown in Fig. 1. Here, each band
reflects model-space uncertainties from varying the os-
cillator frequency from 12 to 16 MeV. The results for
the softer interaction with a cuto↵ of 394 MeVc�1 are
shown in red and exhibit less model-space dependence
than those for the harder interaction with 450 MeVc�1

shown in blue. The overall uncertainty estimate on the
radii, both from model-space uncertainties and system-
atic uncertainties of the interactions is then about 2-3%,
i.e. the full area covered by (and between) both bands.

Overall, the �NNLOGO potentials reproduce the
prominent pattern of a minimum radius at the sub-shell
closure N = 14, and they agree with data within uncer-
tainties for mass numbers 22  A  30. The computed
radii continue to increase beyond N = 14, and they re-
flect the absence of the N = 20 shell closure in magne-
sium. This is, of course, the beginning of the island of
inversion. However, the theory results do not reproduce
the very steep increase from A = 30 to 32. Thus, they
seem to reflect remnants of a shell closure at N = 20
that are not seen in the data. Theory predicts increasing
charge radii as the dripline is approached. This is con-
sistent with an increase in nuclear deformation as neu-
trons are added [45]. We also note that theory predicts
a marked shell closure at N = 8 for neutron-deficient
magnesium. This is in contrast to the trend projected
in Ref. [40]. The excited 2+ state in 18Mg at 1.6 MeV
is somewhat higher that the 1.2 MeV observed in 20Mg,
and the question regarding a sub-shell closure at N = 8
is thus undecided. It will be interesting to compare the
theoretical results with upcoming laser spectroscopy ex-
periments that are at the proposal stage [46].

The plot of isotopic variations in the charge radii,
shown in Fig. 3, is interesting. Theory is not accurate
regarding most isotopes shifts and over-emphasizes shell
closures at N = 14 and N = 20 that are not in the data.
This is perhaps a most important result of this study:
While state-of-the-art potentials can now describe charge
radii within 2-3% of relative uncertainties, finer details
such as isotope shifts still escape the computations.

We show the results for binding energies in Fig. 4. Our
calculations yield the dripline at 40Mg, with 42Mg being
about 1.8 MeV less bound for the �NNLOGO(394) po-
tential. However, computational limitations prevented us
from including continuum e↵ects, which can easily yield
an additional binding energy of the order of 1 MeV [77].
This prevents us from predicting the unknown dripline
in magnesium more precisely [78].

Another uncertainty stems from the lack of angular-
momentum projection. To estimate the corresponding
energy correction, we performed a projection after vari-
ation within the Hartree-Fock computations. These pro-
jections lower the Hartree-Fock energy by about 3 to
5 MeV, see Fig. 2 for an example. We expect that a pro-
jection of the coupled-cluster results would yield slightly
less energy gains (because these calculations already in-
clude some of the correlations that are associated with a

FIG. 3. (Color online) As in Fig. 1 but for the isotope shift,
i.e. the charge radii squared relative to 26Mg.

FIG. 4. (Color online) As in Fig. 1 but for the ground-state
energies.

projection). Overall, Fig. 4 shows that the �NNLOGO

potentials accurately describe nuclear binding energies
also for open-shell nuclei.
Binding-energy di↵erences, such as the two-neutron

separation energy, is another observable sensitive to shell
structure and dripline physics. Figure 5 shows that
the overall pattern in the data is accurately reproduced
within the uncertainties from the employed interactions
and model spaces. However, the details of the sub-shell
closure at N = 14 escape the theoretical description,
i.e. theory predicts a slightly stronger sub-shell than ob-
served experimentally.
We finally turn to neon isotopes. Here, our compu-

tations have been less extensive to manage the avail-
able computational cycles. We limited the computa-
tions of energies to the �NNLOGO(394) potentials in a
model space of 13 harmonic oscillator shells at ~! =
16 MeV. For the charge radii we also employed the
�NNLOGO(450) potential at ~! = 12 MeV. Figure 6
shows that the ground-state energies are close to the

Coupled Cluster  
(with deformation)

Novario et al., PRC 102, 051303 
Bonaiti et al., PRC 105, 034313 
Hagen et al., PRC 105, 064311

Gor’kov Greens Functions

Somà et al., PRC 101, 014318

NOVEL CHIRAL HAMILTONIAN AND OBSERVABLES IN … PHYSICAL REVIEW C 101, 014318 (2020)

FIG. 8. Same as Fig. 7 but for calcium isotopes. Values for the
recently measured masses of 55−57Ca were taken from Ref. [91]. The
estimated computational errors due to model space truncations are
≈1% of the total binding energy for NNLOsat and 0.5% for NN+
3N(lnl) and NN+ 3N (400).

all even-even isotopes, are shown together with ADC(3)
calculations in doubly closed-shell nuclei (colored horizontal
bars) and compared to available experimental data (black
points). Corresponding two-neutron separation energies are
shown in Figs. 7(b), 8(b) and 9(b). Following the analysis
of Secs. IV B and IV C, model-space convergence errors for
NNLOsat [NN + 3N(lnl)] are estimated to be at most 1%
(0.5%) of the total binding energy up to the calcium isotopes
and 2% (1%) for the nickels up to 68Ni. Many-body trunca-
tion errors are 4% for ADC(2) and below 1% for ADC(3),
generally underestimating the binding energy. Uncertainties
for NN + 3N (400) are the same as for NN + 3N(lnl).

All three interactions yield similar results for ground-state
energies of the oxygen isotopes and are generally close to ex-
perimental values. While for NN + 3N (400) and NNLOsat the
agreement is excellent through the whole chain, NN + 3N(lnl)
shows some mild underbinding for the most neutron-rich
systems. Although additional correlations coming in at the
ADC(3) level tend to provide additional binding, one notices
that this effect is not large in oxygen. For all interactions,
the dripline at 24O is correctly reproduced, as also visible
in Fig. 7(b). For the model space parameters used here, the
two N3LO Hamiltonians predict 28O to be less bound than
26O, while the opposite is found for NNLOsat. However, we
find that computed ground-state energies for the unbound 28O
depend sensibly on emax and h̄! which is consistent with a
discretization of the continuum imposed by the HO space. For

FIG. 9. Same as Fig. 7 but for nickel isotopes. The estimated
computational errors due to model space truncations are below 2% of
the total binding energy for NNLOsat and below 1% for NN+ 3N(lnl)
and NN+ 3N (400). Note that the ADC(3) truncation accounts for
an additional 2–3% of the total binding energies with respect to
ADC(2), for all interactions throughout this chain.

heavier systems like calcium and nickel, the NN + 3N (400)
Hamiltonian is known to produce strong overbinding with
respect to experimental data [28,29]. This is confirmed by
present calculations as visible in Figs. 8(a) and 9(a). Instead,
one notices that the two most recent Hamiltonians, NNLOsat
and NN + 3N(lnl), largely correct for this overbinding. For
instance, on the light-mass side, the ADC(2) energy for 36Ca
goes from 20.4 MeV (7.2%) overbinding for NN + 3N (400)
to 11.8 MeV (4.1%) underbinding for NNLOsat and 7.0 MeV
(2.4%) underbinding for NN + 3N(lnl). Among the heav-
ier isotopes, 68Ni goes from 64.8 MeV (10.9%) overbind-
ing for NN + 3N (400) to 45.0 MeV (7.6%) underbinding
for NNLOsat and 15.9 MeV (2.6%) underbinding for NN +
3N(lnl).

Many-body correlations beyond ADC(2) provide addi-
tional binding and ground-state energies of all considered
isotopes are lower by 2–3% when switching to ADC(3).
While this aggravates the overbinding of NN + 3N (400) [28],
it is expected to reduce the underbinding of the other two
potentials. The latter expectation is corroborated by ADC(3)
results of closed-shell nuclei along the two chains. Once
ADC(3) corrections are included, binding energies computed
with both NNLOsat and NN + 3N(lnl) Hamiltonians are in
excellent agreement with experimental data. For the above
examples, differences with experiment reduce to 0.9% and
0.2% in 36Ca and to 4.2% and 0.05% in 68Ni for NNLOsat

014318-9
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TABLE VI. Gamow-Teller RMEs in A = 6, 7, 8, and 10 nuclei obtained with chiral axial currents [4] and GFMC (VMC) wave functions
corresponding to the NV2+3-Ia and NV2+3-Ia* Hamiltonian models [1,2,4,37]. Results corresponding to the one-body current at LO (column
labeled “LO”), and to the sum of all the corrections beyond LO (column labeled “Total–LO”) are given, along with the cumulative contributions
(column labeled “Total”) to be compared with the experimental data [75–79] reported in the last row. Results from Ref. [6] based on the
AV18+Il7 nuclear Hamiltonian are also shown where available. Statistical errors associated with the Monte Carlo integrations are not shown,
but are below 1%. Transitions to 8Be are affected by an additional systematic error of ≈5%, see text for explanation.

Transition Model s.s. LO Total–LO Total Expt.

6He(0+;1)→ 6Li(1+;0) Ia [42]→[42] 2.130(2.200) 0.070(0.056) 2.201(2.256) 2.1609(40)
Ia* 2.107(2.192) 0.011(0.005) 2.118(2.197)

Ref. [6] 2.168(2.174) 0.037(0.030) 2.205(2.211)
7Be( 3

2
−; 1

2 ) → 7Li( 3
2

−; 1
2 ) Ia [43]→[43] 2.273(2.317) 0.164(0.165) 2.440(2.482) 2.3556(47)

Ia* 2.286(2.327) 0.052(0.053) 2.338(2.380)
Ref. [6] 2.294(2.334) 0.061(0.050) 2.355(2.384)

7Be( 3
2

−; 1
2 ) → 7Li( 1

2
−; 1

2 ) Ia [43]→[43] 2.065(2.157) 0.103(0.121) 2.168(2.278) 2.1116(57)
Ia* 2.061(2.158) 0.009(0.025) 2.070(2.183)

Ref. [6] 2.083(2.150) 0.046(0.046) 2.129(2.196)
8Li(2+;1)→ 8Be(2+;0) Ia [431]→[44] 0.074(0.147) 0.029(0.041) 0.103(0.188) 0.284 Ref. [78]

Ia* 0.096(0.148) 0.025(0.026) 0.120(0.174) 0.190 Ref. [79]
8B(2+;1)→ 8Be(2+;0) Ia [431]→[44] 0.091(0.146) 0.035(0.042) 0.125(0.188) 0.269(20)

Ia* 0.102(0.148) 0.024(0.026) 0.126(0.174)
8He(0+;2)→ 8Li(1+;1) Ia [422]→[431] 0.262(0.386) 0.040(0.038) 0.302(0.424) 0.512(6)

Ia* 0.297(0.362) 0.025(0.029) 0.322(0.391)
10C(0+;1)→ 10B(1+;0) Ia [442]→[442] 1.928(1.940) 0.050(0.041) 1.978(1.981) 1.8331(34)

Ia* 2.086(2.015) –0.031(–0.037) 2.055(1.978)
Ref. [6] 2.032(2.062) 0.016(0.015) 2.048(2.077)

Table VI, where, for completeness, we also show the corre-
sponding VMC values in parentheses along with the GFMC
results from Ref. [6]. We summarize the GFMC results in

NV2+3-Ia
NV2+3-Ia*
AV18+IL7

0.4

0.96 1 1.04 0.96 1 1.04 0.96 1 1.04 0.96 1 1.04

0.6 0.8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1 1 1.1

3H β-decay 6He β-decay 7Be ε-cap(gs) 7Be ε-cap(ex)

8Li β-decay 8B β-decay 8He β-decay 10C β-decay

FIG. 6. Ratios of GFMC to experimental values of the GT RMEs
in the 3H, 6He, 7Be, 8B, 8Be, 8He, and 10C weak transitions.
Theory predictions correspond to the χEFT axial current at LO
(empty symbols) and up to N3LO (filled symbols) obtained with
the NV2+3-Ia and NV2+3-Ia* models. Results from Ref. [6] based
on the AV18+IL7 nuclear Hamiltonian and N4LO currents from
Ref. [5] are also shown. Results for the 3H weak transition were
reported in Ref. [4].

Fig. 6 and compare them (where possible) to the results of
Ref. [6] based on the AV18+IL7 nuclear Hamiltonian.

The effect of the GFMC propagation in imaginary time is
to reduce the VMC results by !4% in all selected transitions
(but for the A = 10 transition obtained with the NV2+3-Ia*
model). The agreement with the data, after the inclusion of
two-body currents, is at the ≈2% (!2%) level for the A =
6 transition with the NV2+3-Ia (NV2+3-Ia*) model; and at
the !4% (!1%) level for the A = 7 cases with the NV2+3-
Ia (NV2+3-Ia*) model. These results are in agreement with
those obtained for the same transitions in the calculations of
Ref. [6] which were based on the AV18+IL7 interactions. The
NV2+3 models lead to a more satisfactory agreement with
the data for the A = 6 RME primarily because, with these
interactions, the LO term is 2% smaller than obtained using
AV18+IL7 model.

The largest discrepancy generated by the use of different
nuclear Hamiltonians, including AV18+IL7, is observed in
the A = 10 transition. This can be appreciated looking at both
Table V and Table VI. From the former, we observe a rather
large cutoff dependence (models a vs. models b), and also a
large sensitivity to the class (either I or II) used to generate the
nuclear wave functions. From Table VI, we see that the results
of Ref. [6], based on the AV18+IL7 Hamiltonian, lie between
models Ia and Ia*. This large model and cutoff dependence
can be traced back to the existence of two nearby Jπ = 1+

excited states in 10B, the lower one a predominantly 3S1[442]
state and the upper one a 3D1[442] state (in LS coupling),
which are only 1 MeV apart. The transition from the 10C(0+)
state, which is predominantly 1S0[442], is large in the S →
S components, but about five times smaller in the S → D
components. This makes the GT matrix element particularly

025501-8
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approximates both 100Sn and its 100In daughter as a single shell-
model configuration, reveals the influence of correlations among the 
nucleons. The full symbols include 2BCs, using consistent couplings 
as in the employed EFT interactions. Finally, the partially filled 
symbols in Fig. 1 represent results from other models from ref. 20,  
where the standard Gamow–Teller operator has been multiplied by 
a quenching factor of q ≈ 0.75.

Based on the results shown in Fig. 1, we predict the range 
. ≲ ∣ ∣ ≲ .M5 2(5) 7 0(7)GT

2  for the Gamow–Teller strength. This range 
overlaps with the evaluation in ref. 25, based on systematic experi-
mental trends in tin isotopes, and the lower end of the measurement 
in ref. 20. The quenching factor we obtain from 2BCs depends some-
what on the employed Hamiltonian and is in the range q2BC = 0.73–
0.85. This range is consistent with the value q = 0.75(2) from ref. 25.  
In the present work we used the spread of results obtained with 
the selected set of EFT interactions and 2BCs as an estimate of 
the systematic uncertainty. A more thorough quantification of the 
uncertainties associated with the many-body methods and EFT 
truncations is beyond the scope of this work, and will be addressed 
in future studies. We note that neglected higher-order correlations 
in our coupled-cluster approach will further reduce the Gamow–
Teller strength (see Supplementary Information for details).

Moreover, we observe that the spread for the 100Sn Gamow–Teller 
strength obtained for the family of EFT interactions used here is sig-
nificantly reduced (by a factor two) when 2BCs are included. This 
is consistent with ideas from EFT that the residual cutoff depen-
dence is due to neglected higher-order terms in the Hamiltonian 
and 2BCs. In addition, we find that the relative contributions to the 
quenching of the Gamow–Teller strength coming from correlations 

and 2BCs vary as a function of the resolution scale of the underlying 
EFT interactions.

Starting from the extreme single-particle model, and adding first 
correlations and then the effects of 2BC, we find that the quench-
ing from correlations typically increases with increasing resolution 
scale of the interaction, and that most of the quenching stems from 
correlations. However, adding first the effects of the 2BCs and then 
the correlations shows that the quenching from 2BCs increases with 
decreasing resolution scale and that most of the quenching stems 
from 2BCs for all but the ‘hardest’ potentials considered in this work 
(see Supplementary Fig. 6 for details).

For a comprehensive study, we now turn to β-decays of light- and 
medium-mass nuclei. Using a selection of the EFT interactions and 
2BCs adopted for 100Sn, we achieved an overall good description of 
β-decays in light nuclei. Figure 2 shows theory-to-experiment ratios 
for large Gamow–Teller transitions in light nuclei. Here, we high-
light the results obtained for the high-precision NN-N4LO + 3Nlnl 
interaction and corresponding 2BCs developed in this work. As 
detailed in the Methods, the 2BCs and three-nucleon forces 3Nlnl 
are parametrized consistently and are constrained to reproduce the 
empirical value of the triton β-decay half-life. Our calculations were 
carried out with the no-core shell model (NCSM)6, a virtually exact 
treatment of correlations in the nuclear wavefunctions (see Methods 
for details). The role of 2BCs is relatively small in light nuclei with 
mass numbers A ≤  7. Full nuclear wavefunctions already provide a 
rather satisfactory description of the transitions with the standard 
Gamow–Teller operator. Furthermore, the inclusion of 2BCs may 
enhance (for example, 8He → 8Li), quench (for example, →Be Li7 3

2
7 1

2
),  

or have virtually no impact on the computed transition (for exam-
ple, →Be Li7 3

2
7 3

2
; see also Supplementary Fig. 13). The small role 
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Fig. 1 | Gamow–Teller strength in 100Sn. Comparison of the Gamow–Teller 
strength |MGT|2 for the β-decay of 100Sn calculated in this work compared 
to data20, systematics25 and other models (extreme single-particle model 
(ESPM), shell-model Monte-Carlo (SMMC), large-space shell-model 
(LSSM), quasiparticle random-phase approximation (QRPA) and finite 
Fermi systems (FFS)) from ref.!20. Open symbols represent results obtained 
with the standard Gamow–Teller operator (στ), filled symbols also include 
two-body currents (2BCs) and partially filled symbols show values 
following from the multiplication of the computed Gamow–Teller strength 
by the square of a phenomenological quenching factor. Each of our 100Sn 
calculations carries a conservatively estimated uncertainty of about 10% 
(not shown to avoid overcrowding the figure).
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Fig. 2 | Gamow–Teller strengths in light nuclei. Theory-to-experiment 
ratio for the Gamow–Teller matrix elements of six strong transitions in 
light nuclei for the NN-N4LO!+!3Nlnl interaction developed in this work. 
The subscripts in the legend denote the total angular momenta of the 
parent and daughter states. All initial states are ground states. In the case 
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space size. This uncertainty is slightly larger than the marker size and is not 
shown for transparency.
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Green’s Function Monte 
Carlo

King et al., PRC 102, 025501 
King et al., arXiv: 2207.11179

NCSM, CC & Valence-Space 
In-Medium Similarity RG

Gysbers et al., Nature Phys. 15, 428

100Sn
 and many, many more… 

(see HH, Front. Phys. 8, 379 (2020) for

a “springboard" for reading)

cf. talk by 
S. Gandolfi



HH, Phys. Scripta 92, 023002 (2017)

HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)                   

HH, S. K. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 
041302 (2014)

HH, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett 110, 242501 (2013)

K. Tsukiyama, S. K. Bogner, A. Schwenk, PRL 106, 222502 (2011)

S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94
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Large-Scale Diagonalization

• basis-size “explosion”: exponential growth 

• importance truncation etc. cannot fully compensate this 
growth as A increases

274 C. Yang et al.
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Figure 1: The characteristics of the CI projected Hamiltonian Ĥ for a variety of
nuclei.

by more than one single-particle state, and a two-body integral becomes zero when a
and b differ by more than two single-particle states, etc. This observation allows us
to determine many of the zero entries of Ĥ without evaluating the numerical integral
in (5).

Empirical evidence suggests that the probability of two randomly chosen but valid
many-body basis states sharing more than k−2 single-particle states is relatively low.
As a result, Ĥ is extremely sparse. Figure 1 shows both the growth of the matrix
dimension (|A|) with respect to Nmax and the growth of the number of nonzero
elements in Ĥ with respect to |A| for a variety of nuclei for both two-body and two-
plus three-body potentials. In practice, we observe that the number of non-zeros in Ĥ
is proportional to |A|3/2.

To compute the eigenvalues of Ĥ efficiently on a high performance parallel com-
puter, the following three issues must be addressed carefully:

1. The generation and distribution of the many-body basis states — This step
essentially determines how the matrix Hamiltonian Ĥ or ĤZ is partitioned and
distributed in subsequent calculations.

2. The construction of the sparse matrix Hamiltonian Ĥ — This step is performed
simultaneously on all processors. Each processor will construct its portion of Ĥ
defined by the many-body basis states assigned to it. Because the positions
of the nonzero elements of the Hamiltonian is not known a priori, the key to
achieving good performance during this step is to quickly identify the locations
of these elements without evaluating them numerically first.

3. The calculation of the eigenvalues and eigenvectors using the Lanczos itera-
tion — The major cost of the Lanczos iteration is the computation required to
perform sparse matrix-vector multiplications of the form y ← Ĥx, where x, y
are both vectors. Performing efficient orthogonalizations of the Lanczos basis
vectors is also an important issue to consider.

3 Parallel basis generation

Because the rows and columns of Ĥ are indexed by valid many-body basis states, the
first step of the nuclear CI calculation is to generate these states so that they can be
used to construct and manipulate matrix elements of Ĥ in subsequent calculations. It

from: C. Yang, H. M. Aktulga, P. Maris, E. Ng, J. Vary, Proceedings of NTSE-2013
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Decoupling in A-Body Space

goal: decouple reference state  
from excitations
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

Could add

 self-consistency.

* mean field or 
explicitly correlated
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

• IMSRG for closed and open-shell nuclei: IM-HF and 
IM-PHFB

• HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)


• HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. 
Rept. 621, 165 (2016)


• Valence-Space IMSRG (VS-IMSRG)                 

• S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci.  

69, 165 


• In-Medium No Core Shell Model (IM-NCSM)                                         

• E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503


• In-Medium Generator Coordinate Method (IM-GCM)                                                
• J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH PRC 98, 054311 (2018)


• J. M. Yao et al., PRL 124, 232501 (2020) 



Merging IMSRG and CI:

Valence-Space IMSRG

Review: 
S. R. Stroberg, HH, S. K. Bogner, and J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 165 
(2019)

Full CI: 
E. Gebrerufael, K. Vobig, HH, and R. Roth, Phys. Rev. Lett. 118, 152503 (2017)
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Ground-State Energies

VS-IMSRG: easy 
access to odd nuclei, 

excited states

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017) 
S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019)
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Quenching of Gamow-Teller Decays

• empirical Shell model calculations require quenching factors 
of the weak axial-vector couling 


• VS-IMSRG explains this through consistent renormalization of 
transition operator, incl. two-body currents

gA

LETTERSNATURE PHYSICS

of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈  0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β−  and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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Fig. 3 | Gamow–Teller strengths in medium-mass nuclei. Comparison 
of experimental30 and theoretical Gamow–Teller matrix elements for 
medium-mass nuclei. a,b, Plots of Gamow–Teller matrix elements: sd-
shell (a) and lower pf-shell (b). Theoretical results were obtained using 
phenomenological shell-model interactions16,31 with an unquenched 
standard Gamow–Teller στ operator (open orange squares), and using the 
VS-IMSRG approach with the NN-N4LO!+!3Nlnl interaction and consistently 
evolved Gamow–Teller operator plus 2BCs (filled green diamonds). The 
linear fits show the resulting quenching factor q given in the panels, and 
shaded bands indicate one standard deviation from the average quenching 
factor. Experimental uncertainties, taken from ref. 30, are shown as vertical 
error bars.
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for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
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and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
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Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β−  and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
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Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.
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Transitions
N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324 

S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019) 
S. R. Stroberg et al. PRC 105, 034333 (2022

• B(E2) much too small: missing collectivity due to intermediate 
3p3h, … states that are truncated in IMSRG evolution (static 
correlation)

N. M. PARZUCHOWSKI et al. PHYSICAL REVIEW C 96 , 034324 (2017)

FIG. 6. Convergence of the first 2+ excitation energy and B(E2)
(in e2 fm4) to ground state of 14C. VS- and EOM-IMSRG methods
[columns (b) and (c) respectively] are compared with NCSM [column
(a)] and experiment [78].

converged values. Hence the utility of the IMSRG:
For light nuclei such as 14C, convergence is obtainable
without extrapolation, and for heavier nuclei, we expect to
be able to identify convergence trends clearly enough to make
extrapolation procedures relatively painless compared to the
prohibitively large uncertainties one would incur when exact
methods such as NCSM are used. Of course, the effect of the
additional NO2B approximation must be fully investigated.

As a final test in the p shell, we analyze the isobaric
neighbor nucleus 14N. Here the EOM-IMSRG requires the use
of a charge-exchange formalism, i.e., ladder operators which
exchange one neutron for a proton. Figure 7 displays the 01

+

FIG. 7. Convergence of 01
+ excitation energy, B(M1) (in µ2

N ) to
ground state, and magnetic dipole moment of 14N. VS- and EOM-
IMSRG methods [columns (b) and (c) respectively] are compared
with NCSM [column (a)] and experiment [77,83].

FIG. 8. Results of EOM-IMSRG(2,2) and VS-IMSRG(2) calcu-
lations of the 21

+ excitation energy (a), and the B(E2; 21
+ → 01

+)
value (b) for several closed-shell nuclei in the sdand pf shells. Due
to experimental values that vary by several orders of magnitude, the
B(E2) values are scaled such that experiment is unity. Computations
are performed at h̄ω = 20 MeV and emax = 12. Experimental results
are taken from [78].

excitation energy for 14N, the ground-state magnetic dipole
moment, and the M1 transition strengths B(M1; 01

+ → 11
+)

and B(M1; 12
+ → 01

+). The agreement among methods is
moderate, with the exception of the transition B(M1; 01

+ →
11

+) to the ground state. We note that this relatively weak
transition, which is an analog of the Gamow-Teller β decay
of 14C, was found to result from a subtle cancellation between
various contributions [62,84], so that small errors on an
absolute scale appear large on a relative scale. Regardless,
the disagreement between VS-IMSRG and EOM-IMSRG will
be investigated in the future.

D. sd and f p shell systems

Ultimately, the power of IMSRG approaches to excited
states and effective operators will be the ability to describe
these properties in medium- to heavy-mass regions where
exact methods are not computationally tractable. In this section
we investigate the quality of these calculations for several
medium-mass nuclei, again using the electric quadrupole and
magnetic dipole operators as case studies.

1. Electric quadrupole observables

Figure 8 displays the first 2+ excitation energies and
B(E2; 21

+ → 01
+) strengths for several nuclei in the sdand

pf shells. We find excellent convergence properties, as we did
in the p shell, and we see reasonable agreement with experi-
ment for the excitation energies. However, transition strengths
are generally underpredicted by an order of magnitude. These
results are strikingly consistent between the two methods. A
tentative explanation for the diminished strength in 22O and
48Ca is provided by the lack of valence protons. In order to
describe the transition in these nuclei, valence neutrons must be
dressed consistently as quasineutrons possessing an effective
charge.

034324-8
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Calcium Isotopes

“parabola” explained 

by sd-pf configuration 
mixing in Shell model:


static correlation

HH, Front. Phys. 8, 379 (2020)



Capturing Collective Correlations: 

In-Medium Generator Coordinate 
Method

J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, HH, J. D. Holt, 
PRC 103, 014315 (2021)

J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, HH, PRL 124, 232501 (2020)

J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, H. H., PRC 98, 054311 (2018)

HH, J. M. Yao, T. D. Morris, N. M. Parzuchowski, S. K. Bogner and J. Engel, J. Phys. 
Conf. Ser. 1041, 012007 (2018)



Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44
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Magnesium Isotopes

• note improvement of rms radius trend from IM-GCM


• global shifts (and/or rotation around “pivot”) often associated with 
cutoff dependence of interactions

J. M. Yao, HH, in preparation
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Magnesium Isotopes

• much improved B(E2) values compared to standard GCM or VS-
IMSRG calculations: IM-GCM captures dynamical and static 
correlations!

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation
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Magnesium Isotopes

• induced 2B quadrupole operator is small (~5%), contrary to typical 
VS-IMSRG (~50%): GCM reference equips operator basis with better 
capability to capture collectivity

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation

O = O(1) →
s→∞

O(s) = O(1)(s) + O(2)(s) + …
induced contributions
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Perturbative Enhancement of IM-GCM
M. Frosini et al., EPJA  58, 64 (2022)

• s-dependence is a built-in diagnostic tool for IM-GCM (not 
available in phenomenological GCM)

• if operator and wave function offer sufficient degrees of freedom, 

evolution of observables is unitary 

• need richer references and/or IMSRG(3) for certain observables
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IM-GCM:  Decay of 48Ca0νββ

• richer GCM state through cranking


• consistency between IM-GCM and IM-NCSM
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J. M. Yao et al., PRL 124,  232501 (2020); HH, Front. Phys. 8, 379 (2020) 
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Application: 0⌫�� from 48Ca to 48Ti (preliminary results)

The value from Markov-chain
Monte-Carlo extrapolation is
M0⌫ = 0.61+0.05

�0.05
The neutron-proton isoscalar pairing
fluctuation quenches ⇠17% further,
which might be canceled out partially
by the isovector pairing fluctuation.

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 26 / 33

 Decay of 48Ca0νββ

• NME from different methods consistent for consistent interactions 
& transition operators 
(A. Belley et al., PRL 126, 042502, S. Novario et al., PRL 126, 182502) 


• interpretation and features differ from empirical approaches (e.g., 
only weak correlation between NME and B(E2) value)

J. M. Yao et al., PRL 124,  232501 (2020); PRC 103, 014315 (2021)

not the full  
story yet: improve IMSRG 

truncations, additional GCM 
correlations, include 


currents, … 
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Counterterm in  Operator0νββ

• Cirigliano et al.: RG 
invariance of the DBD 
transition operator 
requires contact term


• Counter term yields 
robust enhancement 


• varied EFT orders, RG 
scales, interactions


• Next: 

• more interactions


• inclusion of currents


• LEC sensitivity / UQ

R. Wirth, J. M. Yao, H. Hergert, PRL 127, 242502 (2021)



Looking Ahead 
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(Some) Physics Goals

• Neutrinoless Double Beta Decay matrix elements for 76Ge 
and other candidates


• use VS-IMSRG for heavy lifting in parameter sensitivity 
analysis & UQ because IM-GCM is too costly


• accelerate IMSRG & IM-GCM (GPUs, factorization, …) 

• increased precision for beta decays & Schiff moments 


• IM-GCM for odd nuclei


• tackle nuclei for which large multi-shell valence-spaces 
make VS-IMSRG difficult or prohibitive


• Uncertainty Quantification / Sensitivity Analysis 

• need cheap surrogate models (emulators)
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Leveraging Low-Rank Structures
B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)

• principal component analysis of chiral interactions

• free-space SRG effort and storage reduced by several 

orders of magnitude (but not a major bottleneck anyway) 

• no adverse affect on other (studied) observables


• next: 3N & leverage factorization in many-body calculation

EM1.8/2.0 NN+3N
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Compression with Random Projections

• tensorial (= modewise) 
Johnson-Lindenstrauss 
embeddings


• purely based on 
features of (sparse) big 
data sets - integrate with 
physics-based ideas?


• suitable for streaming 
transforms: compress on 
the fly while reading from 
disk

A. Zare, R. Wirth, C. Haselby, HH, M. Iwen, in preparation

EM1.8/2.0 NN+3N, MBPT(2), ctot < 10−3



H. Hergert - 14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP), Aug 31, 2022

Emulating IMSRG Flows

Pearson coefficient: 

p = cov(HDMD, HIMSRG)
σDMD σIMSRG

HDMD(s) vs. HIMSRG(s)

J. Davison, J. Crawford, S. Bogner, HH, in preparation

Dynamic Mode Decomposition 
emulator “learns” all flowing 
operator coefficients from 
snapshots!

EM(500) N3LO, λ = 2.0 fm−1

E(
s)

[M
eV

]

s [MeV−1]
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The Horizon

• predictive ab initio theory with systematic uncertainties & 
convergence to exact result


• developing new capabilities: spectra, radii, transitions, 
clustering, bridge to dynamics /reactions…


• scalable techniques and codes: from day-to-day data 
analysis  to leadership calculations
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Transforming the Hamiltonian

• reference state: single Slater 
determinant

�
�
⇤⇤�

⇤⇤�
⇥

excitations relative 

to reference state:

normal-ordering
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Decoupling

off-diagonal couplings    
are rapidly driven to zero
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• absorb correlations into RG-improved Hamiltonian


• reference state is ansatz for transformed, less correlated 
eigenstate:
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Decoupling
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“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)
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Correlated Reference States

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 

Collective (aka static) correlations, e.g.

due to intrinsic deformation:
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Correlated Reference States

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

IMSRG

reference
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Correlated Reference States

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

use generalized 
normal ordering with 

2B,… densities
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Cluster Structures: 8Be
Application to deformed nuclei: 8Be

Chiral Interaction: SRG softened NN from Entem & Machleidt with 3NF from chiral EFT.
K. Hebeler et al PRC (2011)

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 9 / 44

J. M. Yao, R. Wirth, HH, in progress

HFB potential energy surface
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Application to deformed nuclei: 8Be

Starting from the spherical
reference state and the
energy-minimum deformed
state, the IMSRG(2) is
converged to different
solutions.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 10 / 44

Application to deformed nuclei: 8Be

E2 transition in GCM/IMSRG/6/2 calculation (ref.: �2 = 0.8)

B(E2 : 2+
1 ! 0+

1 ) = 5.77e2fm4, Rm = 2.27 fm (bare operator)

B(E2 : 2+
1 ! 0+

1 ) = 8.76e2fm4 , Rm = 2.54 fm (evolved operator)

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 11 / 44

0+
2

0+
1
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Cluster Structures: 8Be
J. M. Yao, R. Wirth, HH, in progress

• Spherical and prolate references flow towards different 0+ states. 

• Consistent with IM-NCSM:

• prolate reference: ground state and excited 2+ state

• spherical reference: first excited 0+ 

Exp.       Nmax=4    Nmax=2       IM-GCM

                  IM-NCSM              ("2=0.8)      Pr

el
im
in
ar
y
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Factorized Interactions

• O(10) operators, O(100) particles, but O(108-1012) flow equations, 
basis dimension… there must be redundancy


• NN interaction: 5-10 SVD components (short range)


• Coulomb interaction: less well-behaved, but ~25-30 components 
sufficient (long range, no explicit scale)

VNN

VC

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)
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Factorized Interactions

• NN interaction: free-space SRG evolution in component 
form (IMSRG not yet)

• (3N interaction added to produce realistic binding / radii)


• free-space SRG effort and storage reduced by several 
orders of magnitude

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)
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Factorized Interactions

• implementing factorized SRG flow has no adverse affect 
on other observables / expectation values

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)


