

Implications of PREX on the determination of the Nuclear Equation of State

J. Piekarewicz

FOR MORE INFORMATION CONTACT horowit@indiana.

PARITY VIOLATION

THEORETICAL DESCRIPTIONS OF NEUTRON-RICH NUCLEI AND BULK MATTER

LABORATORY MEASUREMENTS OF NEUTRON-RICH NUCLEI AND BULK MATTER

NEUTRON-RICH MATTER IN COMPACT STARS / ASTROPHYSICS

WEBSITE: http://conferences.jlab.org/PREX

ORGANIZING COMMITTEE CHUCK HOROWITZ (INDIANA) KEES DE JAGER (JLAB) JIM LATTIMER (STONY BROOK) WITOLD NAZAREWICZ (UTK, ORNL) JORGE PIEKAREWICZ (FSU SPONSORS: JEFFERSON LAB, JSA

Xperiment

August 17-19 2008

Jefferson Lab

Neutron Stars: Unique Cosmic Laboratories

- Neutron stars are the remnants of massive stellar explosions (CCSN) Satisfy the TOV equations: From Newtonian to Einstein Gravity
- Only Physics that the TOV equation is sensitive to: Equation of State
- Increase from 0.7 to 2 Msun transfers ownership to Nuclear Physics!

Nuclear EOS Density Ladder

Each rung on the ladder relies on other methods for measuring the **EOS** that are often piggybacking on a neighboring one.

$$\frac{dM}{dr} = 4\pi r^2 \mathcal{E}(r)$$

$$\frac{dP}{dr} = -G \frac{\mathcal{E}(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right]$$

$$\left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

Need an EOS: $P = P(\mathcal{E})$ relation

Nuclear Physics Critical

Tidal Polarizability and Neutron-Star Radii (GW170817)

Electric Polarizability:

- Electric field induced a polarization of charge
- A time dependent electric dipole emits electromagnetic waves: $P_i = \chi E_i$
- Tidal Polarizability (Deformability):
- Tidal field induces a polarization of mass
- A time dependent mass quadrupole emits gravitational waves: $Q_{ij} = \Lambda \mathcal{E}_{ij}$

$$\Lambda = k_2 \left(\frac{c^2 R}{2GM}\right)^5 = k_2 \left(\frac{R}{R_s}\right)^5$$

The tidal polarizability measures the "fluffiness" (or stiffness) of a neutron star against deformation. Very sensitive to stellar radius!

Measuring Heavy Neutron Stars (2019) Shapiro Delay: General Relativity to the Rescue

Newtonian Gravity sensitive to the total mass of the binary Kepler's Third Law

$$G(M_{\rm ns} + M_{\rm wd}) = 4\pi^2 \frac{a^3}{P^2}$$

Shapiro delay — a purely General Relativistic effect can break the degeneracy

$$\delta t = \frac{GM_{\mathrm{wd}}}{c^3} \ln \left(\frac{4r_1 r_2}{d^2} \right) \approx 10 \mu s$$

Cromartie et al. (2020)

$$M = 2.08 \pm 0.07 M_{\odot}$$

Neutron-star Interior Composition Explorer (NICER) Simultaneous Mass and Radius Measurements (2019-2021)

NICER was launched from Kennedy's Space Center on June 3, 2017 aboard SpaceX Falcon 9 Rocket and docked at the International Space Station two days later.

NICER measures the compactness of the Neutron Star by looking at back of the star!

Pulse Profile: The stellar compactness controls the light profile from the hot spot

$$\xi = \frac{2GM}{c^2R} = \frac{R_S}{R}$$

Heaven and Earth Laboratory Constraints on the EOS

L (MeV)

- Although a fundamental parameter of the EOS, L is not a physical observable yet is strongly correlated to one: the neutron-rich skin of a heavy nucleus such as ²⁰⁸Pb
- Parity-violating elastic electron scattering is the cleanest experimental tool to measure the neutron radius of lead

PREX-II (Oct 29, 2020) Ciprian Gal - DNP Meeting

Conservation of difficulty:
PVES provides the cleanest
constraint on the EOS of
neutron-rich matter in the
vicinity of saturation density

Heroic effort from our experimental colleagues

The golden era of neutron stars ... G. Baym

Tantalizing Possibility

- Laboratory Experiments suggest large neutron radii for Pb $\lesssim 1\rho_0$
- Gravitational Waves suggest small stellar radii $\gtrsim 2\rho_0$
- Electromagnetic Observations suggest large stellar masses $\gtrsim 4 \rho_0$

Exciting possibility: If all are confirmed, this tension may be evidence of a softening/stiffening of the EOS (phase transition?)

Isidor Isaac Rabi

Who Ordered That?

Preliminary Observations:

- CREX result is consistent with a thin neutron skin prediction (e.g. coupled cluster calculations) and is strongly inconsistent with predictions of a very thick skin
- At this point it appears potentially challenging for DFT models to reproduce both the CREX result of a thin skin in ⁴⁸Ca and the PREX result of a relatively thick skin in ²⁰⁸Pb.

No theoretical model that I know of can reproduce both!

October 12, 2021 DNP

UNIVERSITY of VIRGINIA

0.35

0.25

0.2

0.15

0.15

skin (fm)

Caryn Palatchi

PREX-2

0.35

0.25

 $R_{\rm skin}^{208}({\rm fm})$

Observation:

Comparing to Theory

• CREX result is consistent with a thin neutron skin prediction (e.g. coupled cluster calculations) and is strongly inconsistent with predictions of a very thick skin

Fig 2: Charge form factor minus weak form factor for ⁴⁸Ca as a function of momentum transfer. The curves are for one family of models with the indicted $R_{W_{skin}}$ = weak minus charge rms radii. The error bar shows the CREX result.

Figure taken from J.Mammei CevNS 2019 talk (Jorge Piekarewicz plot), shows various curves for a family of $R_{nskin} = Rn-Rp$ values. Also DOM and NNLO (coupled cluster). Warning: theories shown may (or may not) require further SO correction.

Caryn Palatchi DNP October 12, 2021 UNIVERSITY of VIRGINIA

Conclusions: We have entered the golden era of neutron-star physics

- Astrophysics: What is the minimum mass of a black hole?
- C.Matter Physics: Existence of Coulomb-Frustrated Nuclear Pasta?
- General Relativity: Can BNS mergers constrain stellar radii?
- Nuclear Physics: What is the EOS of neutron-rich matter?
- Particle Physics: What exotic phases inhabit the dense core?
- Machine Learning: Extrapolation to where no man has gone before?

Neutron Stars are the natural meeting place for interdisciplinary, fundamental, and fascinating physics!

My FSU Collaborators

- Genaro Toledo-Sanchez
- Karim Hasnaoui
- Bonnie Todd-Rutel
- Brad Futch
- Jutri Taruna
- Farrukh Fattoyev
- Wei-Chia Chen
- Raditya Utama

My Outside Collaborators

- B. Agrawal (Saha Inst.)
- M. Centelles (U. Barcelona)
- G. Colò (U. Milano)
- C.J. Horowitz (Indiana U.)
- W. Nazarewicz (MSU)
- N. Paar (U. Zagreb)
- M.A. Pérez-Garcia (U. Salamanca)
- P.G.- Reinhard (U. Erlangen-Nürnberg)
- X. Roca-Maza (U. Milano)
- D. Vretenar (U. Zagreb)

The "Old" Generation

- Pablo Giuliani
- Daniel Silva
- Junjie Yang

The New Generation

- Amy Anderson
- Marc Salinas