

Chloë Hebborn

August, 31 2022

Chloë Hebborn

CIPANP 2022

August, 31 2022 1/15

It is a very exciting time to be a nuclear physicist !

[Nature 477, 15, 2011]

Chloë Hebborn

CIPANP 2022

Halo nuclei exhibit a very large matter radius Compact core + one loosely-bound neutrons

 $\mathsf{Ex} :^{11}\mathsf{Be} \equiv {}^{10}\mathsf{Be} + n$

Halo nuclei exhibit a very large matter radius Compact core + one loosely-bound neutrons

 $\mathsf{E} \mathsf{x} :^{11} \mathsf{B} \mathsf{e} \equiv {}^{10} \mathsf{B} \mathsf{e} + n$

 \rightarrow Studied through reaction processes

One-neutron knockout :

 $P(\equiv c+n) + T \rightarrow c+X$

 \Rightarrow high statistics since the neutron is not detected in coincidence !

Knockout cross sections carry information about the nucleus size

CIPANP 2022

Knockout reactions are also a powerful spectroscopic tool

For reactions at high energies and with projectile and target nuclei, simplifications are needed

with SF_i the occupancy of a s.p. orbital i

 $\sigma_{ko}^{sp,i}$ s.p. knockout cross section = diffractive breakup σ + stripping σ

For reactions at high energies and with projectile and target nuclei, simplifications are needed

with SF_i the occupancy of a s.p. orbital i

 $\sigma_{ko}^{sp,i}$ s.p. knockout cross section = diffractive breakup σ + stripping σ

To compute reaction cross section, we need

- *P*-*T* interactions : phenomenological potentials
- Build an effective interaction for the *c*-*n* interaction...

Accurate *ab initio* description for halo nuclei exists, how do use them to predict knockout observables?

[Calci et al. PRL 117, 242501 (2016)]

CIPANP 2022

Halo-EFT bridges *ab initio* theory and reactions involving halo nuclei

EFT description of ¹¹Be : uses separation of scale $R_{\text{core}} \ll R_{\text{halo}}$ [Hammer *et al.* JPG **44**, 103002 (2017)]

 \rightarrow There is no free lunch... there are some unknown EFT coefficients

Halo-EFT bridges *ab initio* theory and reactions involving halo nuclei

EFT description of ¹¹Be : uses separation of scale $R_{\text{core}} \ll R_{\text{halo}}$ [Hammer *et al.* JPG **44**, 103002 (2017)]

 \rightarrow There is no free lunch... there are some unknown EFT coefficients

→ NLO : exp. binding energies and *ab initio* predictions for ANCs [Calci *et al.* PRL **117**, 242501 (2016)]

Halo-EFT bridges *ab initio* theory and reactions involving halo nuclei

EFT description of ¹¹Be : uses separation of scale $R_{\text{core}} \ll R_{\text{halo}}$ [Hammer *et al.* JPG **44**, 103002 (2017)]

 \rightarrow There is no free lunch... there are some unknown EFT coefficients

→ NLO : exp. binding energies and *ab initio* predictions for ANCs [Calci *et al.* PRL **117**, 242501 (2016)]

NLO description of ¹¹Be is enough for knockout reactions

Reference calculation : ANC=0.786 fm^{-1/2} [Calci et al. PRL 117, 242501 (2016)] Same ANC but different interior : same cross sections Universality (peripherality) of knockout reactions off halo nuclei

C				11		L	L		
C	nı	o	e	н	le	D	D	o	rı

Combining EFTs, *ab initio* predictions and few-body models lead to accurate knockout cross sections

[Exp. : Aumann et al. PRL 84, 35 (2000); Th : Hebborn and Capel, PRC 104, 024616 (2021)]

ANCs of NCSMC $(^{11}Be) \rightarrow$ validation of the *ab initio* prediction !

Combining EFTs, *ab initio* predictions and few-body models lead to accurate knockout cross sections

[Exp. : Aumann et al. PRL 84, 35 (2000); Th : Hebborn and Capel, PRC 104, 024616 (2021)]

ANCs of NCSMC (¹¹Be) \rightarrow validation of the *ab initio* prediction ! Sensitivity to the choice of the optical potentials

C 1					
(.r	າເດ	e⊦	1e	nh	orn
				_	

Combining EFTs, *ab initio* predictions and few-body models lead to accurate knockout cross sections

[Exp. : Aumann et al. PRL 84, 35 (2000); Th : Hebborn and Capel, PRC 104, 024616 (2021)]

ANCs of NCSMC $(^{11}Be) \rightarrow$ validation of the *ab initio* prediction !

Sensitivity to the choice of the optical potentials

Ab initio ANCs predict knockout and transfer data !!

[PRC 98, 034610 (2018); PRC 98, 054602 (2018); PRC 100, 044615 (2019)]

Chloë Hebborn

What about knockout on more bound projectiles?

No more separation of scale when the nucleus is more bound

Are knockout of deeply bound nucleon still peripheral?

Chloë Hebborn	Ch	loë	He	bb	orn
---------------	----	-----	----	----	-----

Knockout of deeply-bound nucleon are not strictly peripheral

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{ko}

CIPANP 2022

Knockout of deeply-bound nucleon are not strictly peripheral

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{ko}

• Rescale with the ANC \rightarrow same asymptotics but SF=0.2-0.01 $\Rightarrow \sigma_{ko}$ is sensitive to the inner part of the wavefunction $\Rightarrow \sigma_{ko}$ depends non-linearly on SF

Knockout of deeply-bound nucleon are not strictly peripheral

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{ko}

• Rescale with the ANC \rightarrow same asymptotics but SF=0.2-0.01 $\Rightarrow \sigma_{ko}$ is sensitive to the inner part of the wavefunction $\Rightarrow \sigma_{ko}$ depends non-linearly on SF

What nuclear observable σ_{ko} are sensitive to?

One can predict knockout cross sections using $\langle r^2 \rangle$

One-neutron knockout data to infer neutron skin thickness...

[Aumann et al. PRL 119, 262501 (2017)]

Ch	loë	He	bb	orr
	_		_	

To infer accurate neutron skin thickness, multistep reactions effects need to be included in the reaction theory

Importance of core particle decay for knockout of deeply-bound nucleon

[Louchart et al. PRC 83, 011601(R) (2011)]

Green's function knockout formalism : [Hebborn and Potel, arXiv : 2206.09948] Many-body hole-core dynamics included via dispersive optical potentials \rightarrow applicable to *N*-removal & -addition, e.g. knockout, (p, d), (d, p)

Chloë Hebborn

CIPANP 2022

Knockout reactions are very powerful spectroscopic tools !

Halo nuclei : Halo-EFT bridges ab initio structure and reaction theory

Knockout reactions are very powerful spectroscopic tools !

Halo nuclei : Halo-EFT bridges ab initio structure and reaction theory

⇒ Unique Halo-EFT descriptions of ¹¹Be constrained with *ab initio* ANCs reproduce knockout and transfer data

Knockout reactions are very powerful spectroscopic tools !

Halo nuclei : Halo-EFT bridges ab initio structure and reaction theory

⇒ Unique Halo-EFT descriptions of ¹¹Be constrained with *ab initio* ANCs reproduce knockout and transfer data

More bound system : knockout cross sections scaling with $\langle r^2 \rangle$

 \Rightarrow Possibility to extract the neutron skin thickness of neutron-rich nuclei

Knockout reactions are very powerful spectroscopic tools !

Halo nuclei : Halo-EFT bridges ab initio structure and reaction theory

⇒ Unique Halo-EFT descriptions of ¹¹Be constrained with *ab initio* ANCs reproduce knockout and transfer data

More bound system : knockout cross sections scaling with $\langle r^2 \rangle$

 \Rightarrow Possibility to extract the neutron skin thickness of neutron-rich nuclei

Prospects : UQ due to the optical potentials with T. Whitehead (MSU), A. Lovell (LANL) and F. Nunes (MSU)

Inclusion of multistep reactions in the eikonal theory

with G. Potel (LLNL)