Don't Stand So Close to Me A story of short-range nuclear repulsion (...and more)

Nadia Fomin

University of Tennessee

September 1, 2022

Just a glance at the EMC effect

Callan-Gross relation: $2xF_1(x) = F_2(x)$

$$2F_1(x) = \frac{F_2(x)}{x} = \sum_i e_i^2 q_i(x) = \frac{4}{9} [u(x) + \bar{u}(x)] + \frac{1}{9} [d(x) + \bar{d}(x)] + \frac{1}{9} [s(x) + \bar{s}(x)]$$

Just a glance at the EMC effect

$$2F_1(x) = \frac{F_2(x)}{x} = \sum_i e_i^2 q_i(x) = \frac{4}{9} [u(x) + \bar{u}(x)] + \frac{1}{9} [d(x) + \bar{d}(x)] + \frac{1}{9} [s(x) + \bar{s}(x)]$$
$$F_2^A(x) \neq ZF_2^P(x) + NF_2^A(x)$$

Electron Scattering is our microscope

$$2F_1(x) = \frac{F_2(x)}{x} = \sum_i e_i^2 q_i(x) = \frac{4}{9} [u(x) + \bar{u}(x)] + \frac{1}{9} [d(x) + \bar{d}(x)] + \frac{1}{9} [s(x) + \bar{s}(x)]$$
$$F_2^A(x) \neq ZF_2^P(x) + NF_2^N(x)$$

Enter ⁹Be

High-Momentum Nucleons \Leftrightarrow Short-Range Correlations

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

<u>Difficulty</u>

- High momentum pair can come from SRC (initial state) OR
- Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

A(e,e'p)

²H(e,e'p) Mainz PRC 78 054001 (2008)

E = 0.855 GeV $\theta = 45^{\circ}$ E'=0.657 GeV $Q^{2}=0.33 \text{ GeV}^{2}$ x=0.88

Unfortunately: FSI, MECs overwhelm the high momentum nucleons

FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for $Q^2 = 0.33$ (GeV/c)²[4] compared to calculations [5] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low p_m data have been re-analyzed and used in this work to determine f_{LT} (color online).

High-Momentum Nucleons ⇔ Short-Range Correlations

Do a relative measurement

High-Momentum Nucleons ⇔ Short-Range Correlations

Try inclusive scattering! Select kinematics such that the initial nucleon momentum $> k_f$ Do a relative measurement

Short Range Correlations

• To experimentally probe SRCs, must be in the highmomentum region (x>1)

(

• To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken

• In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios

$$\sigma(x, Q^2) = \sum_{j=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) + \frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

E02-019: 2N correlations in A/D ratios

2N knockout experiments establish NP dominance

 R. Subedi et al.,
 Science 320, 1476 (2008)

 R. Shneor et al.,
 PRL 99, 072501 (2007)

- Knockout high-initial-momentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn)

NP dominance: momentum dependent

I. Korover et al, PRL 113 (2014) 022501

R. Schiavilla, R. B. Wiringa, S. C. Pieper, J. Carlson, Phys. Rev. Lett. **98** (2007) 132501

Data mining using CLAS NP dominance continues for heavy nuclei

Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to *np* and *pp* pairs
- (e,e'pp) is sensitive to *pp* pairs alone

=> (e,e'pp)/(e,e'p) ratio is sensitive to the *np/pp* ratio

Electron Scattering is our microscope

0.10

 ^{12}C

¹²C

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

 $R_{2N} = a_2 + CoM$ correction

Two Hypotheses

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL 106:052301,2011*)
 - a_2 measures the relative high momentum tail good for testing virtuality
 - dR_{EMC}/dx relevant quantity

- EMC effect is driven by "local density" (JA, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, PRC 86, 065204 (2012))
 - SRCs are sensitive to high density configurations, but MUST remove the center of mass motion smearing to get R_{2N}
 - measure of correlated pairs relative to the deuteron
 - EMC effect samples *all* the nucleons, whereas R_{2N} is only sensitive to *np* pairs, a subset of all possible NN configurations

Local density vs high virtuality

J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, P. Solvignon, PRC 86, 065204 (2012)

Data show a WEAK preference for LD

Can other *universal* **EMC functions be obtained**?

HV picture: np-dominance generates predictable isospin dependence of EMC effect

LD picture: EMC effect from short-distance pairs, assumed to be isospin independent

TENNESSEE KNOXVILLE

Can other *universal* **EMC functions be obtained**?

HV picture: EMC effect from np-SRC, generates known isospin dependence

LD picture: Driven by short-distance pairs, assumed to be isospin independent

As in 2012 EMC-SRC test, somewhat better description in isospin-independent LD picture

J. Arrington and N. Fomin Phys. Rev. Lett. 123, 042501 (2019)

Where are we now?

JEFFERSON LAB DEDICATES UPGRADED CEBAF

May 31, 2018

Distinguished guests, staff members, Users and members of the media attend ceremony dedicating the recently upgraded facility.

The Department of Energy and the Thomas Jefferson National Accelerator Facility ushered in a new era of science with a dedication ceremony for the 12 GeV CEBAF Upgrade project on May 2.

"Today marks not only the completion of the construction project, but the beginning of a

new era of scientific discovery at Jefferson Lab, a new era of discovery for the scientific community, as well as

Where are we now? Publishing Nature Papers

S. Li, et al., Nature 609, 41 (2022)

Where are we now? Publishing Nature Papers

S. Li, et al., Nature 609, 41 (2022)

E12-10-008: J. Arrington, A Daniel, NF, D. Gaskell: Detailed Studies of the nuclear dependence of F_2 in light nuclei

E12-06-105: J. Arrington, D. Day, NF, P. Solvignon: Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes

1.8

1.6

1.4

1.2

0.8

0.6

0.4

³He 🗕

N/P ratio

First paper from commissioning data submitted to PRL

First Measurement of the EMC Effect in ¹⁰B and ¹¹B

A. Karki,¹ D. Biswas,^{2,*} F. A. Gonzalez,³ W. Henry,⁴ C. Morean,⁵ A. Nadeeshani,² A. Sun,⁶ D. Abrams,⁷ Z. Ahmed,⁸ B. Aljawrneh,^{9,†} S. Alsalmi,¹⁰ R. Ambrose,⁸ D. Androic,¹¹ W. Armstrong,¹² J. Arrington,¹³ A. Asaturyan,¹⁴ K. Assumin-Gyimah,¹ C. Ayerbe Gayoso,^{15,1} A. Bandari,¹⁵ J. Bane,⁵ J. Barrow,⁵ S. Basnet,⁸ V. Berdnikov,¹⁶ H. Bhatt,¹ D. Bhetuwal,¹ W. U. Boeglin,¹⁷ P. Bosted,¹⁵ E. Brash,¹⁸ M. H. S. Bukhari,¹⁹ H. Chen,⁷ J. P. Chen,⁴ M. Chen,⁷ M. E. Christy,² S. Covrig,⁴ K. Craycraft,⁵ S. Danagoulian,⁹ D. Day,⁷ M. Diefenthaler,⁴ M. Dlamini,²⁰ J. Dunne,¹ B. Duran,²¹ D. Dutta,¹ C. Elliott,⁵ R. Ent,⁴ H. Fenker,⁴ N. Fomin,⁵ E. Fuchey,²² D. Gaskell,⁴ T. N. Gautam,² J. O. Hansen,⁴ F. Hauenstein,²³ A. V. Hernandez,¹⁶ T. Horn,¹⁶ G. M. Huber,⁸ M. K. Jones,⁴ S. Joosten,¹² M. L. Kabir,¹ N. Kalantarians,²⁴ C. Keppel,⁴ A. Khanal,¹⁷ P. M. King,²⁰ E. Kinney,²⁵ H. S. Ko,²⁶ M. Kohl,² N. Lashley-Colthirst,² S. Li,²⁷ W. B. Li,¹⁵ A. H. Liyanage,² D. Mack,⁴ S. Malace,⁴ P. Markowitz,¹⁷ J. Matter,⁷ D. Meekins,⁴ R. Michaels,⁴ A. Mkrtchyan,¹⁴ H. Mkrtchyan,¹⁴ S. Nanda,¹ D. Nguyen,⁷ G. Niculescu,²⁸ I. Niculescu,²⁸ Nuruzzaman,²⁹ B. Pandey,² S. Park,³ E. Pooser,⁴ A. J. R. Puckett,²² M. Rehfuss,²¹ J. Reinhold,¹⁷ N. Santiesteban,²⁷ B. Sawatzky,⁴ G. R. Smith,⁴ H. Szumila-Vance,⁴ A. S. Tadepalli,²⁹ V. Tadevosyan,¹⁴ R. Trotta,¹⁶ S. A. Wood,⁴ C. Yero,¹⁷ and J. Zhang^{3, ‡} (for the Hall C Collaboration)

Details in next talk (J. Arrington)

Preparing 2N SRC publication as well

Analysis by Casey Morean (UTK)

More Upcoming SRC Searches

CaFe Experiment in Hall C at JLab

- Studying SRC pairing
 - effect of different orbits
 - dependence on A and N/Z
- Test of ab-initio calculations
- Observables
 - cross sections
 - single ratios SRC/MF
 - double ratios (SRC/MF)_A1 / (SRC/MF)_A1
- A(e,e'p) measurement at different kinematics (8 days)
 - mean field (MF)
 - SRC pairs
- Various targets (⁴⁰Ca ⁴⁸Ca ⁵⁴Fe, ⁹Be ¹⁰B ¹¹B ¹²C, d)

Run Group M in Hall B at Jlab

- 4.4 and 6.6 beam energy
- Several targets
- Various reaction channels
- Measurement of nn-pairs possible
- Run in 2021

- 1. NN Interaction & Nuclear wave-function [²H, ⁴He]
- Many-body systems & nuclear asymmetry [⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn]
 - Decouple N/Z vs A; nn vs pp
- 3. 3N-SRC observation [⁴He, ¹²C, ⁴⁰Ca]
 - First Observation of A dependence
 - Reaction Mechanisms [⁴He, ¹²C, ⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn]
 - Q², A dependence

More nucleons in a correlation

 $1.4 < x < 2 \Longrightarrow 2$ nucleon correlation $2.4 < x < 3 \Longrightarrow 3$ nucleon correlation

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

3N correlations (x>2 inclusive scattering)

TENNESSEE KNOXVILLE

Have we actually seen 3N SRC in ratios?

omment on "Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei"

Douglas W. Higinbotham1 and Or Hen2

¹Jefferson Lab, Newport News, VA 23606, USA ²Tel Aviv University, Tel Aviv, Israel

3N correlations - still looking

Z. Ye et al, PRC 97 (2018) 6

3N correlations – are we there yet?

 α represents the light-cone momentum fraction of 3N SRCs carried by the correlated nucleon *i*

We were so close

Summary

- Studies of SRCs continue at Jlab in the 12 GeV era
 - Tantalizing connection between 2N SRCs and EMC effect seen in 6 GeV data
- First observation of 3N SRC existence is yet to come
- New results in the next few years!
- This work was supported by DOE Award DE-SC0013615