The LHC/EIC Synergy in Searches for **New Physics**

Radja Boughezal

Argonne National Laboratory

14th Conference on the Intersections of Particle and Nuclear Physics, CIPANP 2022

August 30, 2022

Status of the Standard Model

Example: di-boson cross sections

Remarkable agreement between SM theory and experiment over all sectors of the theory, and spanning orders of magnitude in cross section

Example: Higgs production and decay

BSM Searches

No conclusive evidence of BSM physics so far, despite a broad spectrum of searches. Limits on new physics mass scale exceed 1 or more TeV in many cases

Motivation

What do we learn from the remarkable success of the SM, combined with the null searches so far at the LHC and elsewhere?

• The data suggests (although it doesn't require) a mass gap between the SM and any new physics

 M^{max} is the maximum energy probed at the LHC and elsewhere

Λ is the scale where new particles
 appear

We hope that Λ isn't too far above M^{max}!

Introduction to SMEFT

higher-dimensional operators suppressed by a scale Λ

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_6^i(\mu) \mathcal{O}_6^i(\mu) + \frac{1}{\Lambda^4} \sum_{i} C_8^i(\mu) \mathcal{O}_8^i(\mu) + \dots$$

Dimension-6 Dimension-8

- $\Lambda \gg E,v$ (Higgs vev) must both be satisfied
- Odd dimensions violate lepton or baryon number; neglected here
- RG running important when comparing experiments at disparate energies

• An EFT framework that incorporates the mass gap is the Standard Model Effective Field Theory (SMEFT): assume the SM field content and gauge symmetry, and include all possible

Introduction to SMEFT

• What might we find when we analyze data using this framework?

Best case: a non-zero value for a Wilson coefficient Cⁱ indicating a mass scale slightly above probed values. Gives a definite energy target for future experiments.

Otherwise: stringent constraints on the Cⁱ from the wealth of available data that also suggest where to focus future searches and model-building efforts. Recall the success of indirect EW constraints in suggesting the Higgs mass scale.

Constructing the SMEFT

• First step is to construct a complete and non-redundant basis of operators at each dimension. One commonly-used possibility at dimension-6 is the Warsaw basis.

Pure Gauge interactions

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$			$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$		$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$X^2 c^2$		$\psi^2 X_{i\sigma}$		$\psi^2 \omega^2 D$		2	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
0	inter CA CAMP	0	(I all a law	$O^{(1)}$	(ati B ca)(I att)	ł			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$\varphi_{\varphi G}$	$\varphi_{\mu\nu}G_{\mu\nu}G^{\mu\nu}$	Q_{eW}	$(\iota_p \sigma - e_r) \tau^- \varphi w_{\mu\nu}$	φ_{gl}	$(\varphi^{,i}D_{\mu}\varphi)(i_{p}\gamma^{,i}i_{p})$				$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(l_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overset{\circ}{D}_{\mu} \varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating			
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{q}_{p} \gamma^{\mu} q_{r})$		Q_{ledq}	$(\bar{l}_p^j e_\tau)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}]$	$[(q_s^{\gamma j})^T C l_t^k]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$Q_{quqd}^{(1)} = (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$		Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$		$Q_{quqd}^{(8)} = (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$		Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{d}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T \right]$	Cu_r^β]	$[(u_s^{\gamma})^T Ce_t]$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j\sigma_{\mu\nu}e_r)\varepsilon_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$				

Gauge-Higgs interactions

Fermion-Higgsgauge interactions

Buchmuller, Wyler (1986); Grzadkowski et al (2010); Brivio, Jiang, Trott (2017)

Four-fermion interactions

Baryon-number violating interactions (not considered here)

Constructing the SMEFT

• First step is to construct a complete and non-redundant basis of operators at each dimension. One commonly-used possibility at dimension-6 is the Warsaw basis.

 $i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Pure Gauge

interactions

D	φ^6 an		X^3	
Param		Q_{φ}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_G
	(¢	$Q_{\varphi \Box}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\tilde{G}}$
CO	$(\varphi^{\dagger}D$	$Q_{\varphi D}$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	Q_W
			$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\widetilde{W}}$
genera	ψ^2		$X^2 \varphi^2$	
with	$(\bar{l}_p \sigma$	Q_{eW}	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	$Q_{\varphi G}$
VVILII	$(\bar{l}_p$	$Q_{\epsilon B}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	$Q_{\varphi \widetilde{G}}$
r	$(\bar{q}_p \sigma'$	Q_{uG}	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{\varphi W}$
1	$(\bar{q}_p \sigma$	Q_{uW}	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{\varphi \widetilde{W}}$
	(\bar{q}_p)	Q_{uB}	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	$Q_{\varphi B}$
	$(\bar{q}_p \sigma')$	Q_{dG}	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	$Q_{\varphi \widetilde{B}}$
all a	$(\bar{q}_p \sigma^l)$	Q_{dW}	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	$Q_{\varphi WB}$
$\tau^{\mu\nu}d_r)\varphi B_{\mu\nu} = Q_{\varphi ud}$	$(\bar{q}_{p} q$	Q_{dB}	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	$Q_{\varphi \widetilde{W}B}$

ameter counting: 2499 baryonconserving operators for 3 erations. Can reduce to O(100) ith flavor assumptions such as minimal flavor violation

Gauge-Higgs interactions

Fermion-Higgsgauge interactions

Buchmuller, Wyler (1986); Grzadkowski et al (2010); Brivio, Jiang, Trott (2017)

 $(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ Q_h $(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$ Q_{ld} $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $(\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $^{A}a_{c})(\bar{u}_{*}\gamma^{\mu}T^{A}u_{*})$ $(T^A q_r)(d_r \gamma^{\mu} T^A d_r)$ lating $^{T}Cu_{r}^{\beta}\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$ ${}^{T}Cq_{r}^{\beta k}$ [$(u_{s}^{\gamma})^{T}Ce$ $T^{T}Cq_{r}^{\rho\kappa} ||(q_{s}^{\gamma})$ $^{T}Cu_{r}^{\beta}$ [$(u_{s}^{\gamma})^{T}Ce_{t}$]

Brivio, Jiang, Trott (2017)

Four-fermion interactions

 $Q_{lequ}^{(3)} = (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

Baryon-number violating interactions

Matching new physics models to SMEFT

• How do we translate theories with new particles into the SMEFT framework? Let's consider a few examples, beginning with a Z' boson. Study its tree-level amplitude.

Example 2: matching gravitons to the SMEFT

• Now let's consider the exchange of a Randall-Sundrum graviton, and derive its cross section.

Nice Features of the SMEFT

• As demonstrated, the EFT framework encapsulates a broad swath of BSM theories; • Allows straightforward comparisons of different experiments.

determine the constraints on the Cⁱ, then work out the Cⁱ for a given model of new physics.

 $\phi^{\dagger}\phi B_{\mu\nu}\tilde{B}^{\mu\nu}$ $\phi^{\dagger}\phi W_{\mu\nu}\tilde{W}^{\mu\nu}$ $C_{\phi B}$: $C_{\phi \widetilde{W}}$:

Can compare constraints on CP-violating gauge-Higgs interactions from low-energy observables such as EDMs with high-energy LHC probes 11

Challenges in the SMEFT

• As demonstrated, the EFT framework encapsulates a broad swath of BSM theories; • Allows straightforward comparisons of different experiments.

determine constraints on the Cⁱ, then work out the Cⁱ for a given model of new physics.

 $\phi^{\dagger}\phi B_{\mu\nu}\tilde{B}^{\mu\nu}$ $\phi^{\dagger}\phi W_{\mu\nu}\tilde{W}^{\mu\nu}$ C_{φB}: $C_{\phi \widetilde{W}}$:

An example of a flat direction: low-energy — experiments can only probe one linear combination of the Cⁱ; need another experiment (the LHC in this case) to break the degeneracy

Removing LHC flat directions with a future Electron-Ion collider (EIC)

qql operators at the LHC

Strongest constraints expected from Drell-Yan data at the LHC.

Precise data and theory up to high invariant masses at the LHC

• Study the issue of flat directions in the semi-leptonic four-fermion sector of the SMEFT.

l, q: left handed doublets e, u, d: right handed singlets

Relevant dimension-6 operators at the LHC

qqll operators at the LHC

- Why are we looking only at four-fermion operators contributions?
- Other operators contribute as well, and shift the ffV vertices

$$O_{\varphi\ell}^{(1)} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{\ell}\gamma^{\mu}\ell)$$

$$O_{\varphi\ell}^{(3)} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \tau^{I}\varphi)(\bar{\ell}\gamma^{\mu}\tau^{I}\ell)$$

$$O_{\varphi\ell} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{\ell}\gamma^{\mu}\ell)$$

$$O_{\varphiq}^{(1)} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{q}\gamma^{\mu}q)$$

$$O_{\varphiq}^{(3)} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \tau^{I}\varphi)(\bar{q}\gamma^{\mu}\tau^{I}q)$$

$$O_{\varphi\mu} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}\gamma^{\mu}u)$$

$$O_{\varphi\ell} = (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{d}\gamma^{\mu}d)$$

These are strongly constrained by the precision Z-pole data of LEP, SLC; however, these experiments only weakly constrain four-fermion operators (Falkowski et al, 1706.03783) 15

Dawson, Giardino 1909.02000

High-invariant mass cross section

$$\frac{d\sigma}{dM^2 dY dc_{\theta}} \sim A_1 \hat{t}^2 + A_2 \hat{u}^2$$

$$A_{1} = -\frac{8\pi\alpha Q_{u}}{3} \left[(C_{lu} + C_{qe}) \right] + \frac{2g_{Z}^{2}}{3} \left[g_{R}^{u} g_{L}^{e} C_{lu} + A_{2} \right]$$
$$A_{2} = -\frac{8\pi\alpha Q_{u}}{3} \left[(C_{eu} + C_{lq}^{(1)} - C_{lq}^{(3)}) \right] + \frac{2g_{Z}^{2}}{3} \left[g_{R}^{u} g_{L}^{e} C_{lu} + C_{lq}^{e} \right]$$

 Upon integration over any symmetric range of c_{θ} :

• Let's examine the structure of the DY-cross section at the LHC for $\hat{s} \gg M_Z^2$. It depends on the invariant mass M of the lepton pair, the rapidity Y of the lepton pair, and an angle θ :

> c_{θ} : CM-frame scattering angle of the negatively charged lepton

$$\hat{u} = -\hat{s}(1+c_{\theta})/2, \hat{t} = -\hat{s}(1-c_{\theta})/2$$

 $+ g_R^e g_L^u C_{qe}]$ $d\sigma_{\gamma}$ SMEFT ^{uubar} + $d\sigma_{Z}$ SMEFT ^{uubar} ${}^{u}_{R}g^{e}_{R}C_{eu} + g^{u}_{L}g^{e}_{L}C^{(1)}_{lq} - g^{u}_{L}g^{e}_{L}C^{(3)}_{lq}$

Best case: can only probe these two combinations of the seven total Wilson coefficients

$$\frac{d\sigma}{dM^2dY} \sim A_1 + A_2$$

M², Y distributions only probe one combination of Wilson coefficient

Current high-mass measurements

We will use this representative 8 TeV, 20 fb⁻¹ Drell-Yan data set in our example fits. While it goes to 1.5 TeV in m_{ll} and not higher, ATLAS gave a detailed accounting of the experimental error matrix (it was originally intended as a SM measurement)

Note that the pseudo-rapidity difference measured in this data is symmetric under $c_{\theta} \rightarrow -c_{\theta}$ and therefore only probes the same single combination A1+A2.

Existing high-mass measurements probe only a single combination of Wilson coefficients

Blind spots in the LHC coverage

RB, Petriello, Wiegand 2004.00748

• The explicit fit to the previously shown LHC data demonstrates that there are blind spots in the LHC coverage; it is insensitive to certain linear combinations of the Wilson coefficients

The analysis was repeated using 13 TeV data sets and the conclusions remain unchanged

DIS at a future EIC

through polarized DIS at the EIC.

• Another experimental option to probe these Wilson coefficients in the future is

Example contribution to the cross section

 $y = Q^2/x s$

$$= -x \frac{Q_u Q^2}{8\pi \alpha} \left[C_{eu} (1 + \lambda_u) (1 + \lambda_e) + (C_{lq}^{(1)} - C_{lq}^{(3)}) (1 - \lambda_u) (1 - \lambda_e) + (1 - y)^2 C_{lu} (1 + \lambda_u) (1 - \lambda_e) + (1 - y)^2 C_{qe} (1 - \lambda_u) (1 + \lambda_e) \right]$$

Disentangle Wilson coefficients with polarization

DIS at a future EIC

 Another experimental option to probe through polarized DIS at the EIC.

Disentangle Wilson coefficients with polarization

• Another experimental option to probe these Wilson coefficients in the future is

Observables

• We can form the following cross sections using polarized beams at the EIC

$$d\sigma_{0} = \frac{1}{4} \sum_{q} f_{q/H} [d\sigma^{++} + d\sigma^{+-} + d\sigma^{-+} + d\sigma^{--}] : \text{unpol. } \ell + \text{unpol. } H$$
$$d\sigma_{\ell} = \frac{1}{4} \sum_{q} f_{q/H} [d\sigma^{++} + d\sigma^{+-} - d\sigma^{-+} - d\sigma^{--}] : \text{pol. } \ell + \text{unpol. } H$$
$$d\sigma_{H} = \frac{1}{4} \sum_{q} \Delta f_{q/H} [d\sigma^{++} - d\sigma^{+-} + d\sigma^{-+} - d\sigma^{--}] : \text{unpol. } \ell + \text{pol. } H$$

theoretical errors:

Polarized electrons,
unpolarized hadrons
$$A_{PV} = \frac{d\sigma_{\ell}}{d\sigma_{0}}$$

Lepton charge
asymmetries $A_{LC} = \frac{d\sigma_{0}(e^{+}H) - d\sigma_{0}(e^{-}H)}{d\sigma_{0}(e^{+}H) + d\sigma_{0}(e^{-}H)}$

We consider several asymmetries at the EIC, in order to partially cancel both experimental and

unpolarized electrons,
polarized hadrons
$$\Delta A_{PV} = \frac{d\sigma_H}{d\sigma_0}$$
PV: parity-v
LC: lepton

(positron beam not part of the nominal EIC configuration, under discussion for future upgrades)

Details of the simulation

- We generate EIC pseudodata with the following effects included
 - We perform a detailed experimental simulation using the current best information regarding expected EIC detector performance (see 2204.07557 for details)
 - Assume 80% electron, 70% hadron polarization
 - Inelasticity cuts: y>0.1 to avoid large bin migration and unfolding errors, y<0.9 to avoid photo-production backgrounds
 - SMEFT analysis: x<0.5, Q>10 GeV to avoid uncertainties from non-perturbative QCD and nuclear dynamics

Deuteron

D1	$5 \text{ GeV} \times 41 \text{ GeV} eD$, 4.4 fb^{-1}	P1	$5 \text{ GeV} \times 41 \text{ GeV} ep$, 4.4 fb^{-1}
D2	$5 \text{GeV} \times 100 \text{GeV} eD$, 36.8 fb ⁻¹	P2	$5 \text{ GeV} \times 100 \text{ GeV} ep$, 36.8 fb ⁻¹
D3	$10 \text{ GeV} \times 100 \text{ GeV} eD, 44.8 \text{ fb}^{-1}$	P3	$10 \text{ GeV} \times 100 \text{ GeV} ep, 44.8 \text{ fb}^{-1}$
D4	$10 \text{ GeV} \times 137 \text{ GeV} eD, \ 100 \text{ fb}^{-1}$	P4	$10 \text{ GeV} \times 275 \text{ GeV} ep, \ 100 \text{ fb}^{-1}$
D5	$18 \text{ GeV} \times 137 \text{ GeV} eD, \ 15.4 \text{ fb}^{-1}$	P5	$18 \text{ GeV} \times 275 \text{ GeV} ep, 15.4 \text{ fb}^{-1}$
		P6	$18 \text{ GeV} \times 275 \text{ GeV} ep, \ 100 \text{ fb}^{-1}$

- Red data sets provide the most sensitive probes of the SMEFT; we focus on these configurations in this talk.
- Polarized deuteron and proton copies of these data sets are also studied, and labeled as ΔD , ΔP .
- Data sets where the lepton charge asymmetry is considered are labeled as LD, LP.
- We also consider a high-luminosity version of P5, D5, Δ P5, Δ D5 with a factor of 10 more integrated luminosity.

)ata sets

• We consider the following data sets that span the spectrum of possible EIC beam configurations. We refer to the indicated luminosities as "nominal luminosity (NL)".

Proton

Error sources in the simulation

	polarized lepton	polarized hadron	charge asymmetry		
Error type	<i>A</i> _{PV} (D, P)	$\Delta A_{\rm PV}$ (ΔD , ΔP)	$A_{\rm LC}$ (LD, LP)	P ₁ : lepton polarization	
statistical	$\sigma_{\rm stat}$	$\frac{P_{\ell}}{P_{H}}\sigma_{\text{stat}}$	$\sqrt{10}P_\ell\sigma_{\rm stat}$	P _H : hadron polarization	
uncorrelated	1% rel.	1% rel.	1% rel.		
systematic					
fully correlated	1% rel	2% rel	×	PDF sets used	
beam polarization	1 /0 ICI.	270 ICI.		NNPDF3.1 NLO	
fully correlated	×	¥	×	2% abs	NNPDFpol1.1 NLO
luminosity			270 abs.		
uncorrelated	×	×	$5\% \times (A^{\text{NLO}} - A^{\text{Born}})$		
QED NLO			$J/J/J/LC$ I_{LC}		
fully correlated					
PDF		•			

Electron, positron data would be taken in separate runs; luminosity difference possible

used:

Error budget: unpolarized protons

luminosity. PDF errors negligible.

• Bins first ordered in Q². Within each Q² bin we then order in x. HL is a proposed highluminosity option with an increase by a factor of 10 w.r.t the nominal integrated luminosity

• Polarized lepton asymmetry much larger than all uncertainties. Statistical uncertainties dominant with the nominal luminosity; systematic errors more important with high luminosity than with nominal

Error budget: polarized protons

Bins first ordered in Q². Within each Q² bin we then order in x. HL is a proposed highluminosity option with an increase by a factor of 10 w.r.t the nominal integrated luminosity

Statistical uncertainties still dominant but PDF errors non-negligible, particularly with the high luminosity option. Polarized proton asymmetry only larger than the statistical uncertainties in higher Q² bins.

Error budget: lepton-charge asymmetry

• Bins first ordered in Q². Within each Q² bin we then order in x. HL is a proposed highluminosity option with an increase by a factor of 10 w.r.t the nominal integrated luminosity

LP5: 18GeV x 275 GeV ep, 15.4 fb^-1

• Luminosity error dominant in this measurement; larger than the lepton charge asymmetry until high Q²

Pseudo data generation

$$A_{pseudo,b}^{(e)} = A_{SM,b} + r_b^{(e)}\sigma_b^{unc} + r'^{(e)}\sigma_b^{cc}$$

r_b, r' = random numbers
in the range [0,1]
uncorrelated correlated

errors; separate r_b for each bins r' for all bins

errors; same

$$A_{\text{SMEFT},b} = \frac{\sigma_{\text{num},b}^{(0)} + \sum_{k=1}^{N_{\text{fit}}} C_k \sigma_{\text{num},b}^{(1)}}{\sigma_{\text{den},b}^{(0)} + \sum_{k=1}^{N_{\text{fit}}} C_k \sigma_{\text{den},b}^{(1)}}$$

Nfit: number of Wilson coefficients turned on at a time. count: the number of pseudo experiments with a given best fit value of Ceu

b = bin index

e = pseudo-experiment index (we average over numerous realizations of the EIC to remove fluctuations)

Trends:

SMEFT results: 1-d fits

• Begin by turning on one representative Wilson coefficient (results for other Wilson coefficients look similar)

Proton sensitivities are stronger than deuteron ones • Unpolarized hadrons with polarized electrons offer strongest probes • Lepton-charge asymmetries provide weakest probes

motivates the choice of the effective scale.

SMEFT results: 1-d fits

• Convert these bounds to effective UV scales probes. Note that the SMEFT deviation goes as C/Λ^2 which

Boughezal et al, 2204.07557

3 TeV scales probed with the nominal luminosity, 4 TeV with high luminosity. Competitive with current LHC bounds.

SMEFT results: 2-d fits

- see if the EIC could help resolve degeneracies that appear with LHC NC DY data
- Can resolve the degeneracies that remain after LHC measurements! No degeneracies remain in the SMEFT parameter space with the nominal EIC program
- Note that the EIC and LHC constraints are orthogonal. Can combine them to strengthen further the bounds on the parameter space.

• Let's consider now two Wilson coefficients turned on simultaneously. An original motivation was to

Boughezal et al, 2204.07557

P4: 10 GeV x 275 GeV ep, 100 fb^-1 D4: 10 GeV x 137 GeV eD, 100 fb^-1

Higher-dimensional fits

degradation of sensitivities. Requires more pseudo-experiments.

Nfit: number of Wilson coefficients turned on at a time.

Nexp: number of pseudo experiments required for the analysis

the full 7-dimensional parameter space in this sector of the SMEFT.

• Can turn on more Wilson coefficients to further search for degeneracies and check

Boughezal et al, 2204.07557

• No degeneracies in higher-d fits; only slightly weaker bounds. The EIC can probe

Conclusions

- SMEFT is a convenient framework for parametrizing UV physics in a model independent way
- The EIC is capable of powerful probes of BSM effects difficult to access at the LHC due to its ability to polarize both beams
- We have shown that the EIC can remove degeneracies in the four-fermion sector of the SMEFT that the LHC cannot distinguish
- Looking forward to a rich and exciting research program at the EIC!