PDFs from EIC, lattice QCD, and the LHC

CIPANP 2022

Orlando, Florida

this talk: PDF activity key for 2 core needs in fundamental QCD

1: LHC-based SM tests limited by (incomplete) proton structure info Boughezal, ...

→ many standard-candle HEP measurements PDF-limited

→ taming PDF dependence: knowledge of hard-to-access phase-space regions this talk: high x

Kaazde, Kotwal, ...

Metz, Sato, ...

Arratia, ...

→ PDF studies vital to nonpert. QCD, mapping hadron structure

- 2: parallel developments likely to impact both areas
 - \rightarrow lattice QCD: new opportunities to constrain inaccessible PDF behavior
 - \rightarrow EIC program, preparations have substantial PDF implications

 highlight through:
 i current status of PDFs;
 ii lattice QCD possibilities

 iii EIC projections;
 iv conclusion(s)

- i SM tests at LHC require high theory accuracy; precision
 - from NNLO analyses, state-of-the-art predictions for fundamental LHC observables $\rightarrow e.g.$, total cross sections at 14 TeV

 significant PDF-driven uncertainties; also, systematic effects: W cross sections sensitive to inclusion of 2016 7 TeV ATLAS inclusive W/Z data

Snowmass21, Amoroso et al.: <u>2203.13923</u>

→ driven by marriage of high-energy data; **latest theory**

• periodic benchmarking (PDF4LHC21) valuable to cross-check treatment of data

 \rightarrow intercompare theory choices; understand methodological dependence

i

i BSM searches in HEP also require EW theory accuracy

- non-standard physics may appear in tails of rapidity, inv. mass distributions
- important for high-energy LHC processes: *e.g.*, 13 TeV W+H production:

TeV-scale NLO EW corrections dominated (60%) by single-photon (PDF) contributions
 → requires delicate treatment along with QCD perturbative effects

electroweak precision: photon, <u>high-x PDFs</u>; nonpert. QCD i

• at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

Xie, TJH, Hou, Schmidt, Yan, Yuan: PRD105 (2022) 5, 054006.

following CT14QED, CT18QED now interfaces LUX formalism

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{z}{z} \left\{ \int_{\frac{x^{2}m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{Q^{2}}{Q^{2}} \alpha_{ph}^{2}(-Q^{2}) \left[\left(zp_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}(x/z,Q^{2}) - z^{2}F_{L}(x/z,Q^{2}) \right] - \alpha^{2}(\mu^{2})z^{2}F_{2}(x/z,\mu^{2}) \right\} + \mathcal{O}(\alpha^{2},\alpha\alpha_{s})$$

depends on nonperturbative inputs [kinematical cuts alone can't avoid this]

high-*x* PDFs remain dominated by large uncertainties

i

• PDF (Hessian) uncertainties enlarge dramatically in high-*x* limit

• *d*-PDF information from deuteron scattering; nuclear corrections relevant

$$f^d(x,Q^2) = \int \frac{dz}{z} \int dp_N^2 \,\mathcal{S}^{N/d}(z,p_N^2) \,\widetilde{f}^N(x/z,p_N^2,Q^2)$$

- corrections are generally ~percent-level, but can become larger, especially at <u>high x</u>
 - → also, PDF correlations with gluon, other flavors
- impacts LHC observables; necessary for high precision
- analogous situation for heavy-nuclear effects in vA scattering → main (inclusive) source of strangeness info.

Accardi, TJH, Jing, Nadolsky: EPJC81 (2021) 7, 603.

PDF4LHC21 benchmarking: J.Phys.G 49 (2022) 8, 080501.

- MC sampling of high-*x* PDFs can sometimes produce irregularities
 - \rightarrow *e.g.*, positive-definiteness not always guaranteed for $x \rightarrow 1$

strong need for high-x sensitive data: JLab12 [24]; (HL-)EIC; FASERv

1

PDF uncertainties: parametrization dependence

1

• initial PDFs still not generally calculable through rigorous QCD at $Q = Q_0 = m_c$ (more on this shortly...)

 \rightarrow subject to complex nonperturbative dynamics

 \rightarrow practice agnosticism w.r.t. initial parametrization

(some guidance from QCD, QCD-inspired models)

 \rightarrow explore model uncertainty with many forms

parametrization uncertainties largest in extrapolated regions

■ PDF (Mellin) moments from lattice: **higher moments** ↔ **higher cov. derivatives**

$$\frac{1}{2} \sum_{s} \langle p, s | \mathcal{O}_{\{\mu_1, \cdots, \mu_{n+1}\}}^q | p, s \rangle = 2 v_q^{n+1} \left[p_{\mu_1} \cdots p_{\mu_{n+1}} - \text{traces} \right]$$
$$v_q^{n+1}(Q) = \int^1 dx \, x^n \, q(x, Q)$$

- higher moments sensitive to high-x PDFs
- historically, efforts to reconstruct PDFs from lattice-calculable moments (large uncertainties)

more recently

- → technical advances: more (and better) Mellin moment determinations
- → formal advances: quasi- and pseudo-PDFs

status of <u>PDF moments</u> on the lattice (2021)

				PDF-Lattice whitepaper II – Constantinou et al., PPNP121 (2021) 1039				l., PPNP 121 (2021) 103908.	
Moment	Collaboration	Reference	N_f	DE	CE	FV	RE	ES	Value
$\langle x \rangle_{u^+ - d^+}$	ETMC 20 PNDME 20	[235] [236]	2+1+1 2+1+1	•	*	0	*	*	0.171(18) 0.173(14)(07)
	ETMC 19	[237]	2+1+1		÷	ò	÷	$\hat{\star}$	0.178(16)
	Mainz 19	[238]	2+1	*	0	*	*	*	$0.180(25)(^{+14}_{-6})$
	χ QCD 18	[239]	2+1	0	*	0	*	*	0.151(28)(29)
	ETMC 19	[237]	2		*	0	*	*	0.189(23)
	RQCD 18	[240]	2	*	*	0	*	*	0.195(07)(15)
$\langle x \rangle_{s^+}$	ETMC 20 χ QCD 18	[235] [239]	2+1+1 2+1	•	* *	0 0	*	*	0.052(12) 0.051(26)(5)

- depending on flavor, order lattice moments have varying status (above, FLAG evaluations)
 - \rightarrow *e.g.*, the first isovector moment has been computed by numerous groups
- systematic lattice effects are similarly widely varied
- lattice precision lags QCD fits, but higher moments would be informative
- also, novel lattice methods available

ii

 \sim

 boost-dependent quasi-PDF can be matched to light-front PDF, up to power-suppressed corrections Ji, PRL110, 262002 (2013).

$$\langle P|\overline{\psi}\gamma^{z,t}\psi|P\rangle \sim \langle P|\overline{\psi}\gamma^{+}\psi|P
angle$$

$$\widetilde{q}(x, P_z, \widetilde{\mu}) = \int dy \, Z\left(\frac{x}{y}, \frac{\Lambda}{P_z}, \frac{\mu}{P_z}\right) q(y, \mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{P_z^2}, \frac{M^2}{P_z^2}\right)$$

• yields x-dependent PDF information; limited by knowledge of perturbative matching, P_z dependence

• ultimately, the x- and P_{z} dependence of the qPDFs are informative of hadronic wave functions

there are (and will be) important synergies between PDF fitting and lattice QCD

[overlaps with EIC; vDIS; LHC]

• PDF fits **benchmark** pQCD matching; lattice output can **constrain** QCD fits

 lattice data can potentially inform high-x behavior of quark sea

TJH, Wang, Nadolsky, Olness, PRD100 (2019) 9, 094040.

ii

EIC: sensitivity to high-x; driver of lattice benchmarks ii

EIC inclusive DIS data would already have strong PDF sensitivity to many lattice observables; below, the isovector first moment (left) and analogous qPDF (right)

 $|S_f|$ for $[\tilde{u}-\tilde{d}](x=0.85, P_z=1.5 \text{GeV})$, CT14HERA2

- TJH, Wang, Nadolsky, Olness, PRD100 (2019) 9, 094040.
- sensitivity (indicated in red) from broad range of x and scale Q; basis for reducing PDF uncertainties \rightarrow benchmarking lattice calculations \rightarrow further extrapolating to higher x

15

reach of the EIC program

- EIC explores unique region in $[x, Q^2]$; machine for HEP-NP intersections
- transformed and transformed an
- \rightarrow strong coverage of quark-to-hadron transition region between HERA, JLab12
- even higher luminosity would enhance EIC's coverage at periphery of nominal $[x, Q^2]$ space
 - \rightarrow strengthen overlaps with other experiments; enable more scaling studies

PDF impacts compared to high-value fixed-target DIS

ePump: Schmidt, Pumplin, and Yuan; PRD98 (2018) no.9, 094005. 1.5 u(x,Q) at Q =1.3 GeV 90%C.L. 1.4 CT14H2-DIS': CT14H2, no fixed-target DIS 1.3 'CT14H2-DIS' + EIC pseudo-data Error bands of u(x,Q) CT14H2: fixed-target DIS restored 1.2 1.11.00.9 0.8 0.7independent method to estimate uncertainty 0.6 reduction confirmed by fits... figure: S. Dulat 0.5 10^{-6} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 0.2 0.5 0.9 Х

• inclusive EIC may surpass total impact of fixed-target DIS in modern fits

 \rightarrow useful for negotiating among existing high-impact data; high lumi could extend further

impact from simulated (optimistic) pseudodata; estimated by various methods, groups

• broad impact, including on high-x u-, d-PDFs; probes of gluon, quark sea to low x

→ <u>inclusive studies</u> – indications of systematics limitations; **must also investigate**

<u>iii</u>

iii

DIS jet production, including through charge-current interactions, provides further access to quark-level information
 Arratia, Furletova, TJH, Olness, Sekula; PRD 103 (2021) 7, 074023.

 $R_s(x,Q)$ Q=10 GeV

final-state tagging provides lever arm for flavor separation (here, strangeness)

• n.b.: event generation, detector sim from PYTHIA8 + DELPHES; FASTJET reconstruction

 \rightarrow analogous jet measurements might be extended to nonperturbative heavy flavor

precision QCD through jet and heavy-flavor production

challenging measurement: final-state flavor tagging; Jacquet-Blondel reconstruction

- charm production suppressed by >2 orders of magnitude; p_T cross section steeply falling
- reduced δ_{stat} could significantly enhance knowledge of p_{T} dependence

Arratia, Furletova, TJH, Olness, Sekula; PRD 103 (2021) 7, 074023.

→ greater event rates may furnish enhanced discriminating power

- extracting PDF information from CC DIS requires robust theory accuracy
 - \rightarrow can compute NNLO, approximate N³LO corrections for highest energies at EIC

strong perturbative convergence

 \rightarrow for N³LO['], scale variations generally contained to $\lesssim 0.5-1\%$

• significantly smaller than PDFdriven uncertainties, which can be as large as $\approx 2\%$

vital ingredient in EIC PDF program

 note improvements at high *x*: suggests possible synergy with highluminosity measurements

precise EIC data impact high-energy predictions

example:

- PDF-driven improvement to
 Higgs-production cross section
- EIC impact on Higgs theory from broad region of the kinematical space it can access

 impact closely tied to that of the integrated gluon PDF

 \rightarrow similar impacts on EW observables

- possible nonperturbative ('intrinsic') charm component of the nucleon long debated
- PDF valence-like *shape* predicted by various nonperturbative models

 \rightarrow *normalization* has been challenging to determine

Brodsky et al.; PLB**93** (1980) 451. TJH, Londergan, Melnitchouk; PRD**89** (2014) 7, 074008.

Nature 608 (2022) 7923, 483.

• recent NNPDF analysis claims evidence; nominal size, $\langle x \rangle_{c^+} (Q = 1.51 \,\text{GeV}) = [0.62 \pm 0.28]\%$

Allowed momentum fractions

Sources of differences	CT14 IC	NNPDF3.x			
order	NNLO only	NLO, NNLO			
Settings	90% c.l., GeV	68% c.l., GeV			
LHC 8 TeV	Under validation; mild tension with HERA DIS data	Included; strong effect despite a smallish data sample			
1983 EMC data included?	Only as a cross check (unknown syst. effects in EMC data)	Optional, strong effect on the PDF error			

• lattice information on momentum fraction would enlighten this landscape, along with EIC

Sources of differences	CT14 IC	NNPDF3.x			
order	NNLO only	NLO, NNLO			
Settings	90% c.l., GeV	68% c.l., GeV			
LHC 8 TeV	Under validation; mild tension with HERA DIS data	Included; strong effect despite a smallish data sample			
1983 EMC data included?	Only as a cross check (unknown syst. effects in EMC data)	Optional, strong effect on the PDF error			

• lattice information on momentum fraction would enlighten this landscape, along with EIC

- PDFs necessary for precision HEP measurements
 - → limit EW precision, sensitivity of collider-based BSM searches
 - → active HEP program: higher theory accuracy; generator development
- parallel developments from lattice, future EIC program will be instrumental
 - → <u>lattice</u>: challenging kinematics; flavor dependence; exotic matrix elements
 - \rightarrow <u>EIC</u>: comprehensive coverage of quark-hadron transition; QCD tests
 - → must pioneer exciting synergies between QCD pheno./lattice

(this talk: mostly high-x; also opportunities at low x, high multiplicity)

- all core to understanding (nonpert.) QCD; nuclear systems
 - → high-x: flavor-symmetry breaking (\bar{d}/\bar{u}) ; WF effects $[d(x \approx 1)]$
 - \rightarrow nuclear PDFs: EIC data; few-body moments, qPDFs from lattice

future experiments central: JLab12 \rightarrow EIC, HL-LHC, LBNF, ...

supplementary material -

high-interest SM quantities are precision-limited by PDFs

 \rightarrow these include σ_H , $\sin^2 \theta_W$, m_W , ...

ATLAS 1701 07240					for example:						
/// [//0, 1/01.0/210											
Channel	$m_{W^+} - m_{W^-}$	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	
	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	
$W \rightarrow ev$	-29.7	17.5	0.0	4.9	0.9	5.4	0.5	0.0	24.1	30.7	
$W \to \mu \nu$	-28.6	16.3	11.7	0.0	1.1	5.0	0.4	0.0	26.0	33.2	
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0	

 \rightarrow the PDF uncertainty can be a/the dominant uncertainty!

 \rightarrow frontier efforts at the HL-LHC aim for (sub)percent precision

 \rightarrow large cross-cutting effort spanning theory/expt to improve

- heightened theory accuracy (HO, power corrections)
- novel measurements (EIC, LHC, νA)
- generator development Snowmass21, Campbell et al.: 2203.11110

theory ingredients \rightarrow <u>higher pQCD accuracy</u>

- current/future analyses involve interplay between pQCD & other dynamics
- NNLO+ necessary to stabilize scale uncertainties; especially over wide scales

CT18 NNLO, PRD 103 (2021) 1

sensitivities can be aggregated for direct comparisons of exps

 \rightarrow EIC stronly sensitive to PDF Mellin moments; lattice benchmarks

total sensitivity to matched quasi-PDFs

 $[\tilde{u}-\tilde{d}](x,Pz=1.5GeV,\tilde{\mu}=3GeV)$

• Recovering PDFs from qPDFs requires the inversion of still-developing *matching relations*,

$$\widetilde{q}(x, P_z, \widetilde{\mu}) = \int dy \, Z\left(\frac{x}{y}, \frac{\Lambda}{P_z}, \frac{\mu}{P_z}\right) q(y, \mu) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2}, \frac{M^2}{P_z^2}\right) \downarrow$$

qPDF

ordinary PDF

 The matching formalism depends crucially on the nucleon boost, P_z; fixed-target DIS data at high x_i are mildly sensitive to this P_z dependence, and can aid theory developments in qPDFs:

<u>BUT</u>: nonperturbative QCD can generate a low-scale charm PDF

→ original models possessed *scalar* vertices...

• Brodsky et al. (1980): intrinsic charm – 'BHPS' and other models $P(p \rightarrow uudc\bar{c}) \sim \left[M^2 - \sum_{i=1}^5 \frac{k_{\perp i}^2 + m_i^2}{x_i}\right]^{-2}$ $\rightarrow \text{ produces intrinsic PDF, } c^{\text{IC}}(x) = \bar{c}^{\text{IC}}(x)$

Brodsky, Hoyer, Peterson, Sakai; Phys. Lett. **B93** (1980) 451.

•Blümlein (2015):

$$\tau_{life} = \frac{1}{\sum_{i} E_{i} - E} = \frac{2P}{\left(\sum_{i=1}^{5} \frac{k_{\perp i}^{2} + m_{i}^{2}}{x_{i}} - M^{2}\right)} \Big|_{\sum_{j} x_{j} = 1} \text{ VS. } \tau_{int} = \frac{1}{q_{0}}$$

 \rightarrow comparison constrains $x - Q^2$ space over which IC is observable

Blumlein; Phys. Lett. **B753** (2016) 619.

we implement a framework which *conserves* **spin/parity**

• **nonperturbative** mechanisms are needed to <u>break</u> $c(x, Q^2 \le m_c^2) = \bar{c}(x, Q^2 \le m_c^2) = 0!$

We build an **EFT** which connects IC to properties of the hadronic spectrum: [TJH, J. T. Londergan and W. Melnitchouk, Phys. Rev. D89, 074008 (2014).]

•
$$|N\rangle = \sqrt{Z_2} |N\rangle_0 + \sum_{M,B} \int dy f_{MB}(y) |M(y); B(1-y)\rangle$$

 $y = k^+/P^+: k \text{ meson, } P \text{ nucleon}$

$$c(x) = \sum_{B,M} \left[\int_x^1 \frac{d\bar{y}}{\bar{y}} f_{BM}(\bar{y}) c_B\left(\frac{x}{\bar{y}}\right) \right]$$

• a similar *convolution* procedure may be used for $\bar{c}(x) \ldots$

+k_

D*0

the resulting intrinsic charm depends on UV scales

•tune universal cutoff $\Lambda = \hat{\Lambda}$ to fit <u>ISR</u> $pp \to \Lambda_c X$ collider data multiplicities, momentum sum:

$$\langle n \rangle_{MB}^{\text{(charm)}} = 2.40\% \ ^{+2.47}_{-1.36}; \qquad P_c := \langle x \rangle_{\text{IC}} = 1.34\% \ ^{+1.35}_{-0.75}$$

low-x H1/ZEUS data check massless **DGLAP** evolution

e.g., a 1st comprehensive fit including data on $F_2^{c\overline{c}}$

without the EMC data on $F_2^{c\overline{c}}$

IC is severely constrained via mom. sum rule via light-quark degrees of freedom

the EMC data prefer modest IC, but do not fit well...

EMC alone: $\langle x \rangle_{\rm IC} = 0.3 - 0.4\%$

+ SLAC/'REST': $\langle x
angle_{
m IC} = 0.13 \pm 0.04\%$

...but $F_2^{c\bar{c}}$ poorly fit — $\chi^2 \sim 4.3$ per datum!

• we constrain the model with hypothetical <code>pseudo-data</code> (taken from the `confining' MBM) of a given $\langle x
angle_{
m IC}~\pm~50\%$

(input data normalizations are inspired by the just-described global analysis)

 $\langle x \rangle_{\rm IC} = 0.001 \qquad [upper limit tolerated by the full fit/dataset]$ $\langle x \rangle_{\rm IC} = 0.0035 \qquad [central value preferred by EMC data alone]$

- rather than traditional χ^2 minimization, the model space is instead explored using **Bayesian methods**

 $\sigma_{c\overline{c}} = 4.3 \pm 4.4 \,\mathrm{MeV} \quad (\gamma = 3 \,\mathrm{interaction}) \quad \sigma_{c\overline{c}} = 32.3 \pm 33.6 \,\mathrm{MeV}$

 we find better concordance cf. existing lattice determinations, for somewhat larger IC magnitudes; also, close correlation with the DIS sector –

$$\sigma_{c\bar{c}} = 94 \,(31) \,\text{MeV} \quad (\chi \text{QCD}) = 67 \,(34) \,\text{MeV} \quad (\text{MILC})$$
¹Abdel-Rehim et al., Phys. Rev. Lett. **116**, 252001 (2016).
$$\sigma_{c\bar{c}} = 79 \,(21) \binom{12}{8} \,\text{MeV} \quad (\text{AR})^{1}$$

bigger point: lattice calculations can directly inform the IC PDF question

understanding nuclear effects

 \rightarrow EIC: measure only "clean" DIS from hadrons; but also explore nuclear medium!

• nPDFs can inform nuclear effects in free-nucleon studies and *vice versa*:

 \rightarrow nuclear effects: jet production, hadronization; implications for <u>AA</u>, <u>UPC</u> programs

• nuclear A dependence requires copious data: high luminosity essential

extracting high-x dependence in PDF fits

- high-x PDFs, ratios [e.g., d/u] connected to details of proton WF
- behavior at $x \to 1$ an important nonpert. discriminator
- CT18, parametrize $f_{a/A}(x, Q_0^2) = x^{A_{1,a}}(1-x)^{A_{2a}} \times \Phi_a(x)$

Η

electroweak precision: photon PDF

- <u>depends on nonperturbative inputs</u> [kinematical cuts alone can't avoid this]
- integrated proton SFs include contributions from low Q, moderate x

$$x\gamma(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{z}{z} \left\{ \int_{\frac{x^2 m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{Q^2}{Q^2} \alpha_{\rm ph}^2(-Q^2) \left[\left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L(x/z,Q^2) \right] -\alpha^2(\mu^2) z^2 F_2(x/z,\mu^2) \right\} + \mathcal{O}(\alpha^2,\alpha\alpha_s)$$

dependence on Sachs EM form factors; twist-4, resonance prescriptions; ...

higher luminosity: understand power-suppressed QCD corrections

• aside from higher-order corrections in α_s : higher-twist, target-mass corrections

• closely-related to **multi-parton interactions** at high energy:

(jet production in electron-nucleus vs. electron-nucleon DIS)

$$\Delta \langle p_T^2 \rangle \equiv \langle p_T^2 \rangle_{eA} - \langle p_T^2 \rangle_{ep} \quad \text{(jet pT broadening)}$$
$$\langle p_T^2 \rangle = \int dp_T^2 p_T^2 \frac{d\sigma}{dx_B dQ^2 dp_T^2} / \frac{d\sigma}{dx_B dQ^2}$$

sensitivity to possible 'new' QCD measurements

- strong interest in measurements connecting event-level observables to fundamental QCD
- e.g., QCD jets (various observables, constructions)

 \rightarrow closely related to tests of QCD factorization

• event-shape measurements: energy correlation functions well-explored at LHC

higher luminosity significantly increases relevant cross sections

EIC and SM inputs: α_s

• part of moving toward N³LO PDFs, precise determinations needed for α_{s}

similar argument for m_Q

• robust PDF sensitivity to

 $\sin^2 \theta_W$ from $A_{\rm FB}$

global event shapes; N-jettiness, $_N$

EIC

- potentially BSM-sensitive extractions of EW quark couplings, $\sin^2 \theta_W$ through **parity violation** LQ $A_{\rm PV}^e = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_P}$ λ_{1lpha} λ_{3eta} q_{β} q_{α} $\kappa_{\alpha\beta} = \lambda_{1\alpha}\lambda_{3\beta}/M_{LO}^2$ EIC YR, 7.5.1 0.245 JAM+EIC $S^{\,\mathrm{L}}_{\,1/2}$ 100 $\begin{array}{c}
 (1 2) \\
 (2 1) \\
 (2 2)
 \end{array}$ $\nu\text{-DIS}^*$ E158 $\sigma[\mathrm{fb}]$ $(M_{\theta})_{0.235}^{0.240}$ 10 0.240 $\sqrt{s} = 140 \text{ GeV}$ PVDIS EIC 0.100 0.010 $\mathcal{L} \sim 250 \text{ fb}^{-1}$ $\Phi_{\rm SoLID}$ 0.001 0.225 10^{2} 10^{-4} 10^{3} 10^{-1} 10^{0} 10^{1} 0.01 0.05 0.10 0.50 $z = \kappa_{\alpha\beta} / \kappa_{\alpha\beta}^{\text{limit}}$ Q (GeV)
- more direct SM tests also possible: searches for charged-lepton flavor violation (CLFV) $e^- + N \rightarrow \tau^- + X$

the electroweak sector and New Physics searches at EIC

- if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z^\prime

$$\mathcal{L}^{\mathrm{PV}} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \right]$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W$$

 a unique strength of an EIC is its combination of very high precision and beam polarization, which allows the observation of parity-violating helicity asymmetries:

$$A^{\rm PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \quad ({\rm R/L}: e^- \text{ beam helicities})$$

selects γ -Z interference diagrams!

TJH and Melnitchouk, PRD77, 114023 (2008).

$$A^{\rm PV} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) (Y_1 \ a_1 \ + \ Y_3 \ a_3)$$
$$a_1 = \frac{2\sum_q e_q \ C_{1q} \ (q+\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})} \qquad a_3 = \frac{2\sum_q e_q \ C_{2q} \ (q-\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})}$$

the electroweak sector and New Physics searches at EIC

- if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z^\prime

$$\mathcal{L}^{\mathrm{PV}} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \right]$$
$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W$$

- with sufficient precision, an EIC (which will be statistics-limited in these measurements) can extract $\sin^2 \theta_W$
 - this measurement is potentially sensitive to the TeV-scale in a complementary fashion to energy-frontier searches!

