Recent results from the NA62 experiment at CERN*

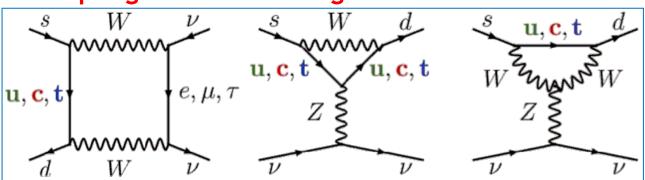
Peter Cooper

(George Mason University)

pcooper.fnal@gmail.com

* with slides gratefully liberated from E. Goudzovski

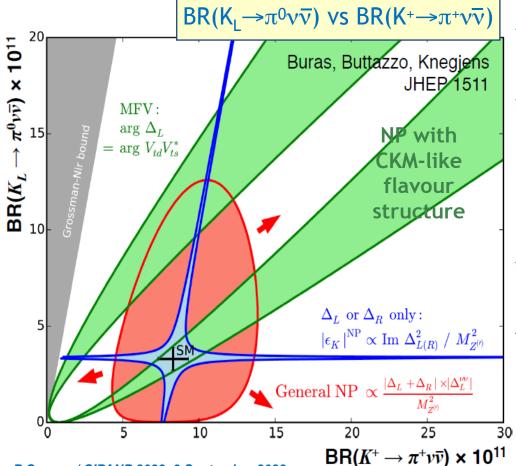
Outline:


- 1) Introduction: rare kaon decays
- 2) The K+ $\rightarrow \pi^+ \nu \nu$ measurement at NA62
- 3) Other NA62 results: hidden sectors, lepton flavour violation
- 4) Long-terms plans for kaon experiments at CERN
- 5) Summary and outlook

$K\rightarrow\pi\nu\nu$ in the Standard Model

SM: Z-penguin and box diagrams

- "Golden modes": extremely rare decays, precise SM predictions.
- \diamond Maximum CKM suppression: $\sim (m_t/m_w)^2 |V^*_{ts}V_{td}|$.
- No long-distance contributions from amplitudes with intermediate photons.
- ❖ Hadronic matrix element extracted from measured BR(K_{e3}) via isospin rotation.

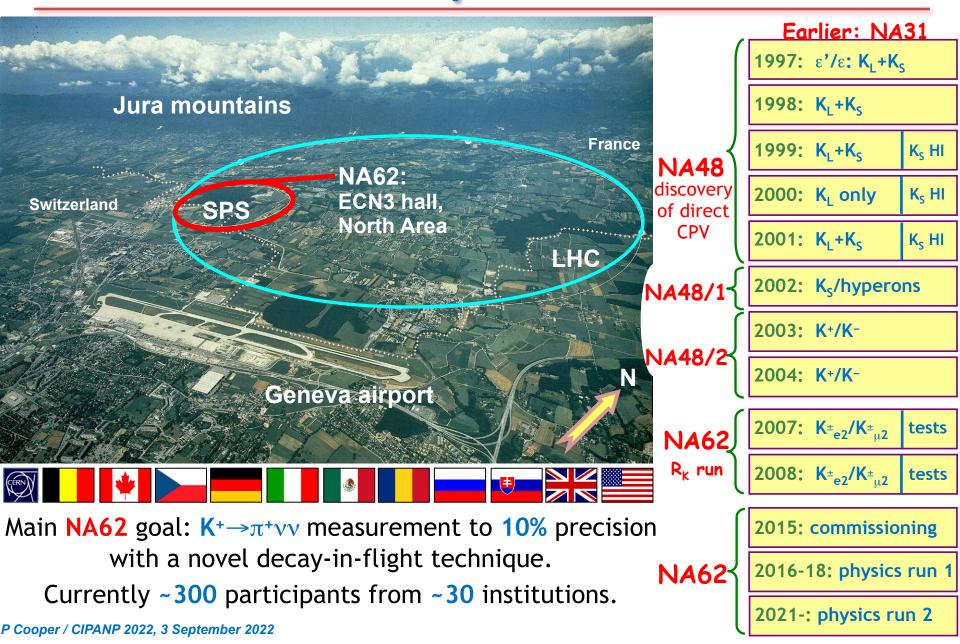

Mode	Standard Model BR	Experimental status	
K +→π+νν	$(8.60\pm0.42)\times10^{-11}$	(10.6±4.0)×10 ⁻¹¹ (NA62 Run 1)	
$K_{I} \rightarrow \pi^{0} V V$	(2.94±0.15)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL	
		(KOTO 2015 data)	

Standard Model BR: a new $|V_{cb}|$ and γ -independent determination.

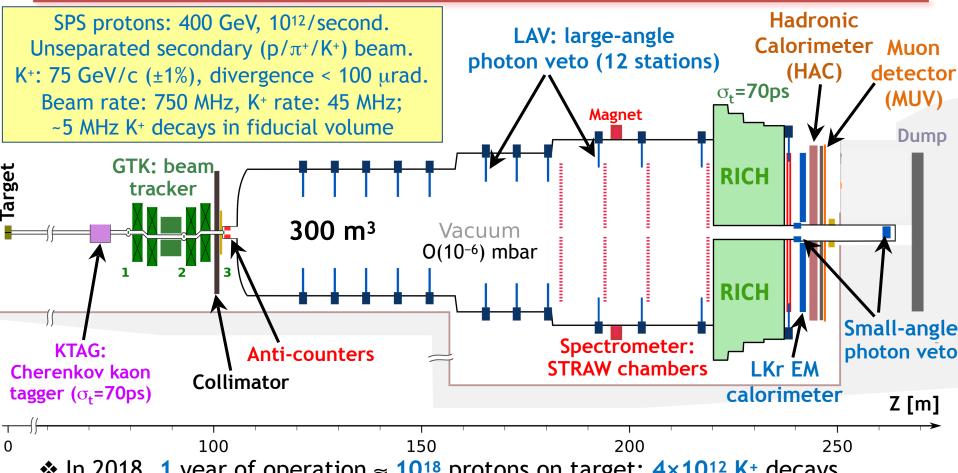
[Buras and Venturini, arXiv:2109.11032]

$K \rightarrow \pi \nu \nu$ and new physics

- Correlations between BSM contributions to K+ and K_L BRs. [JHEP 11 (2015) 166]
- Need to measure both K^+ and K_L to discriminate among BSM scenarios (within SM, this allows for a clean β angle measurement).
- \diamond Correlations with other observables (ϵ'/ϵ , ΔM_K , B decays). [JHEP 12 (2020) 97]

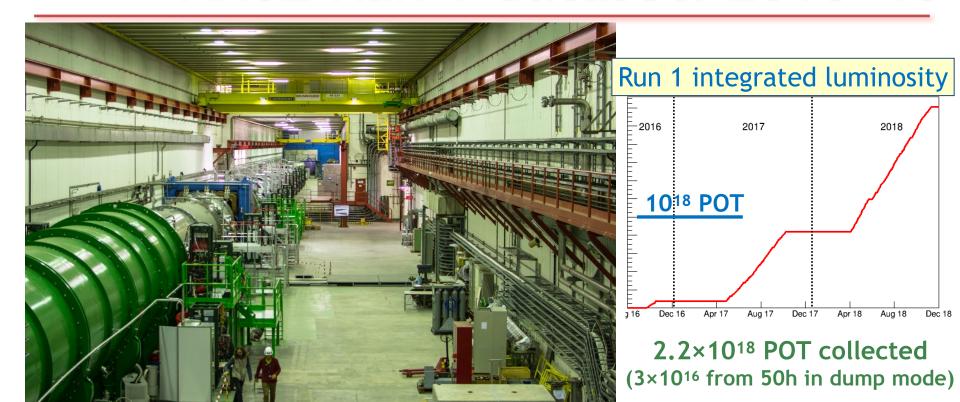

- ❖ Green: CKM-like flavour structure
 ✓ Models with MFV
- Blue: new flavour-violating interactions in which LH or RH couplings dominate
 - ✓ Z' models with pure LH/RH couplings
- Red: general NP models without the above constraints
- The Grossman-Nir bound: a model-independent relation

$$\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$$

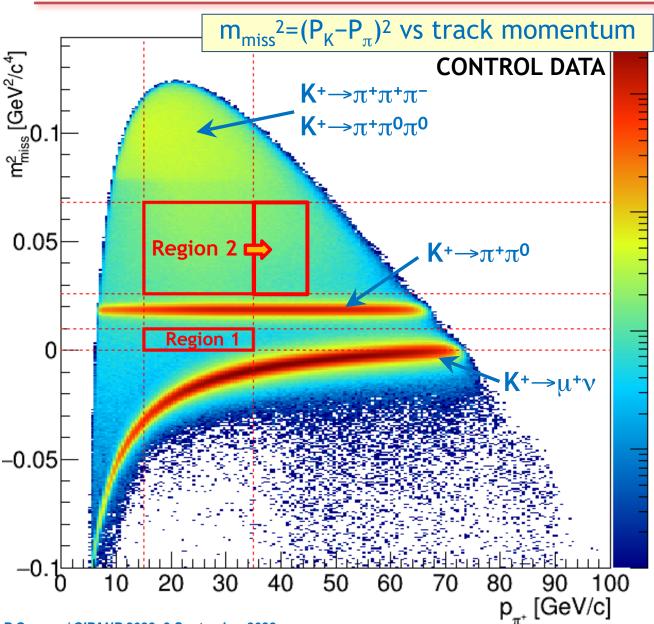

Kaons: other opportunities

- ❖ Direct and indirect CP violation in $K^0 \rightarrow \pi\pi$ decays (ε, ε'), and the $K_L K_S$ mass difference (ΔM_K) [no experiments planned]
 - ✓ Improving capabilities of lattice QCD to provide accurate SM predictions: opportunities for discovery of new physics.
 - ✓ SM precision on ε'/ε can match that of the experiment within a decade, motivating a new measurement.
- \clubsuit Measurement of V_{us} with $K \rightarrow \pi \ell \nu$ decays. [no experiments planned]
 - √ V_{us} accounts for 50% of the uncertainty in the first-row CKM unitarity test.
 - ✓ Uncertainty in V_{us} : equal contributions from experiment $[BR(K \to \pi \ell v)]$ and theory [decay constants f_K/f_{π} , form-factor $f_+(0)$].
 - ✓ Improvements on lattice QCD expected, motivating new measurements.
- Lepton universality tests, lepton flavour & number conservation tests.
 - ✓ BR(K+→(π^0)e+ ν)/BR(K+→(π^0) μ + ν), BR(K+→ π +e+e-)/BR(K+→ π + μ + μ -); searches for K+→ π +(π^0)ℓℓ, K_L→(π^0)(π^0) μ e, K_L→2 μ 2e, ...
- Searches for light hidden sectors: unique sensitivity due to large datasets and suppression of the kaon decay width.

Kaon experiments at CERN



The NA62 experiment


- ❖ In 2018, 1 year of operation ≈ 10^{18} protons on target; 4×10^{12} K+ decays.
- ❖ Single event sensitivities for K+ decays: approaching BR~10⁻¹².
- **\Leftrigorange** Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) ~ 10^{-8} .
- ❖ Particle ID (RICH+LKr+HAC+MUV): ~10⁻² muon suppression.

NA62 Run 1 dataset: 2016-18

- ❖ Commissioning run 2015: minimum bias data (~3×10¹º protons/pulse).
- ❖ Physics run 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- Physics run 2017 (160 days, ~1.9×1012 ppp): 2×1012 useful K+ decays.
- ❖ Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- ❖ Run 2 (2021-): in progress (~3×10¹² ppp), approved till LS3.

NA62: K_{mvv} signal regions

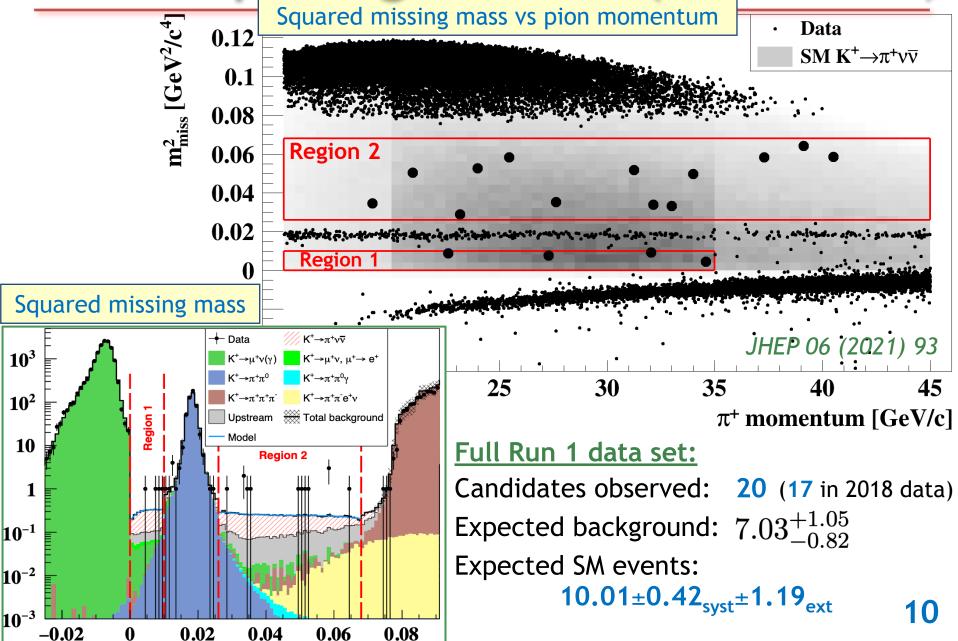
Main K+ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

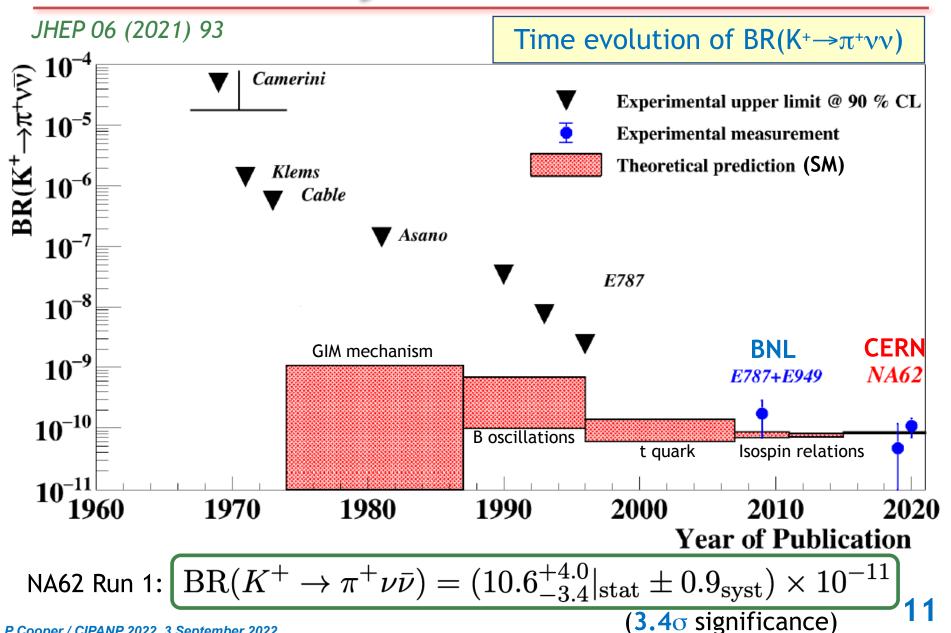
Measured kinematic background suppression:

$$\sqrt{K^+} \rightarrow \pi^+ \pi^0$$
: 1×10⁻³;
 $\sqrt{K^+} \rightarrow \mu^+ \nu$: 3×10⁻⁴.

Further background suppression:

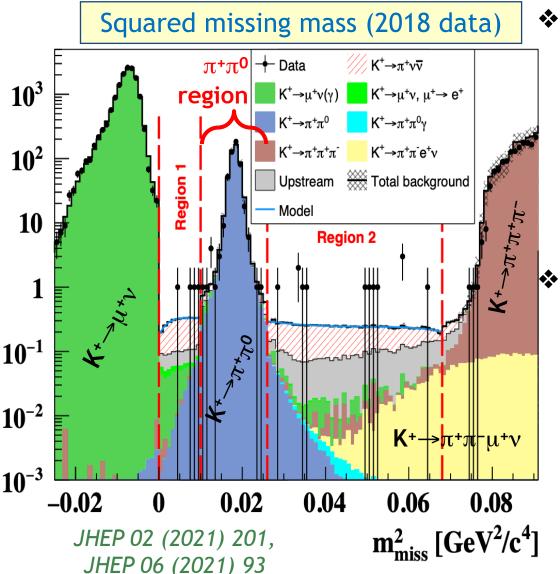

- ✓ PID (calorimeters & RICH): μ suppression 10⁻⁸, π efficiency = 64%.
- ✓ Hermetic photon veto: π^0 → γγ rejection factor = 1.4×10⁻⁸.

Expected backgrounds (2018 data)

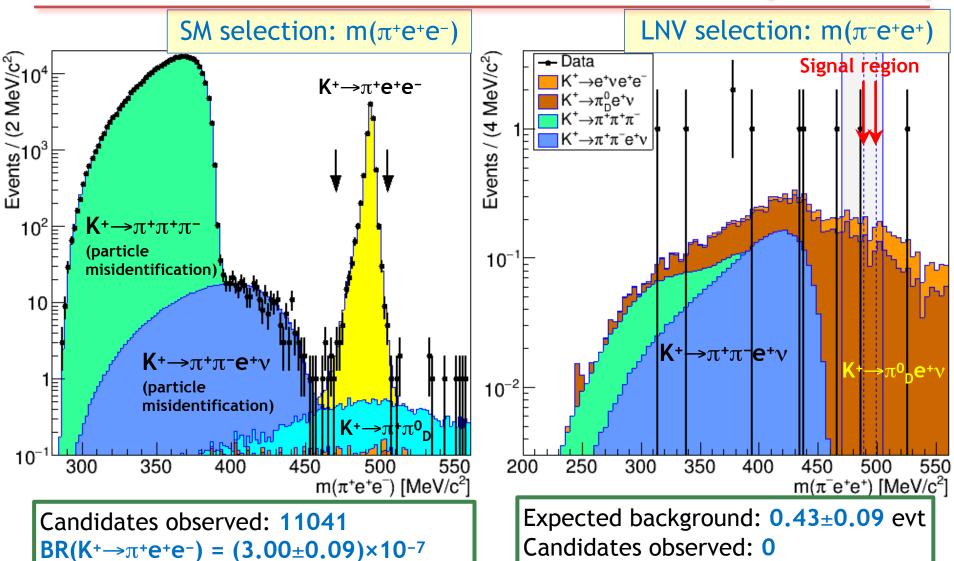

	Background	Subset S1	Subset S2	
-		(old collimator) (new collimator		
	$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05	Data-driven
	$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06	background
	$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10	estimates
	$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08	
	$\pi^+ \gamma \gamma$	< 0.01	< 0.01	
	$\pi^0 l^+ u$	< 0.001	< 0.001	
	$\operatorname{Upstream}$	$0.54^{+0.39}_{-0.21}$	$2.76^{+0.90}_{-0.70}$	Dominant background: a data-driven estimate
_	Total	$1.11^{+0.40}_{-0.22}$	$4.31^{+0.91}_{-0.72}$	
	BR _{SES} ×10 ¹⁰	0.54±0.04	0.14±0.01	
_	$N_{\pi uar u}^{ m exp}$	1.56±0.21	6.02±0.82	

- ❖ Most background is not due to K⁺ decays in the vacuum tank.
- Improved the beamline layout and new upstream veto detectors bring the Run 2 measurement into a low-background regime.

Opening the box (2018 data)



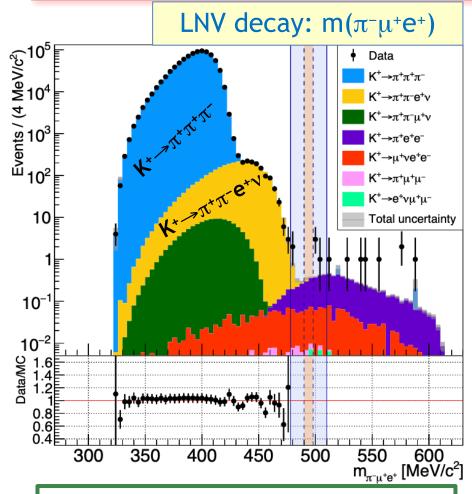
History of $K^+ \rightarrow \pi^+ \nu \nu$ searches


P Cooper / CIPANP 2022, 3 September 2022

Hidden sectors with $K^+ \rightarrow \pi^+ \nu \nu$

- Signal regions R1,R2: search for $K^+ \rightarrow \pi^+ X$ (X=invisible), $0 \le m_X \le 110$ MeV/c² and $154 \le m_X \le 260$ MeV/c².
 - ✓ Interpretation: dark scalar, ALP, QCD axion, axiflavon.
 - ✓ Main background: $K^+ \rightarrow \pi^+ \nu \nu$.
- ♦ The $\pi^+\pi^0$ region: search for π^0 →invisible.
 - ✓ SM rate: **BR**($\pi^0 \rightarrow \nu \nu$)~10⁻²⁴.
 - ✓ Observation = BSM physics.
 - ✓ Reduction of $\pi^0 \rightarrow \gamma\gamma$ background: optimised π^+ momentum range.
 - ✓ Interpretation as $K^+ \rightarrow \pi^+ X$, with m_X between R1 and R2.

Search for $K^+ \rightarrow \pi^- e^+ e^+$ (Run 1)

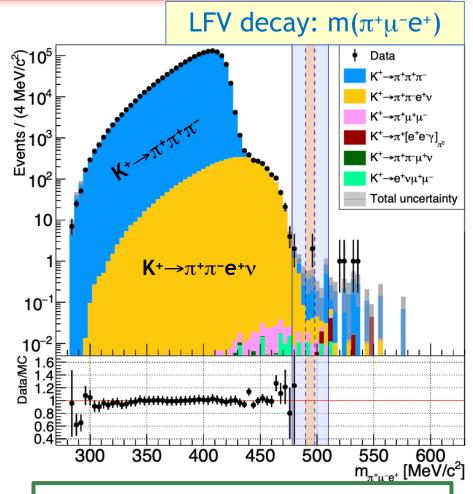


[PLB830 (2022) 137172]

BR(K+ $\rightarrow \pi^-e^+e^+$)<5.3×10⁻¹¹ at 90% CL

K+ decays in FV: $(1.015\pm0.032)\times10^{12}$

Search for $K^+\rightarrow\pi\mu e$ decays (Run 1)



 K^+ decays in FV: $(1.33\pm0.02)\times10^{12}$

Expected background: 1.07±0.20 evt

Candidates observed: 0

BR(K+ $\rightarrow \pi^-\mu^+e^+$)<4.2×10⁻¹¹ at 90% CL

Expected background: 0.92±0.34 evt

Candidates observed: 2

BR(K+ $\to \pi^+\mu^-e^+$)<6.6×10⁻¹¹ at 90% CL

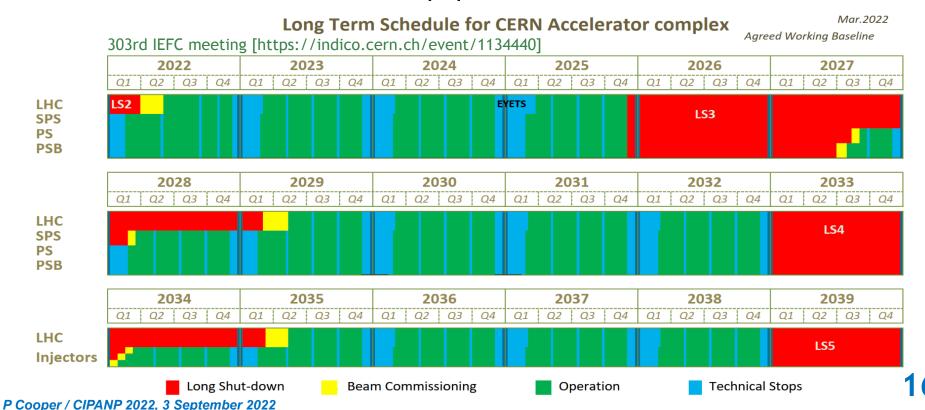
BR($\pi^0 \rightarrow \mu^- e^+$)<3.2×10⁻¹⁰ at 90% CL

[PRL 127 (2021) 131802

P Cooper/ CIPANP 2022, 3 September 2022

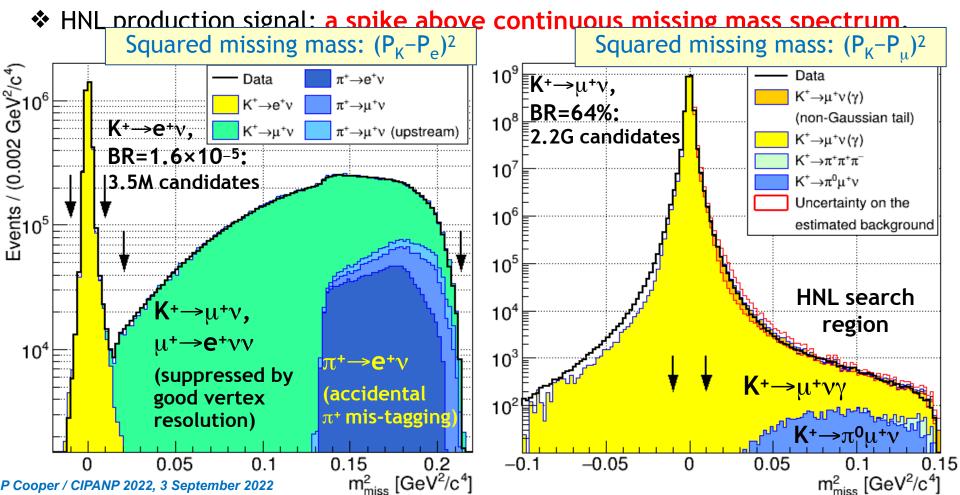
NA62 Run 2: 2021-LS3

- * The technique is firmly established. Run 2: $K^+ \rightarrow \pi^+ vv$ measurement in a low-background, high-acceptance regime, at O(10%) precision.
- Modifications of the setup for background reduction:
 - ✓ fourth kaon beam tracker (GTK) station;
 - ✓ rearrangement of beamline elements around the GTK achromat;
 - ✓ new veto hodoscopes upstream of the decay volume;
 - ✓ an additional veto counter around downstream beam pipe.
- ❖ Improved TDAQ: beam intensity increased by ~30% wrt Run 1.
- Collection of 1018 pot in up to 90 days in beam dump mode is foreseen.

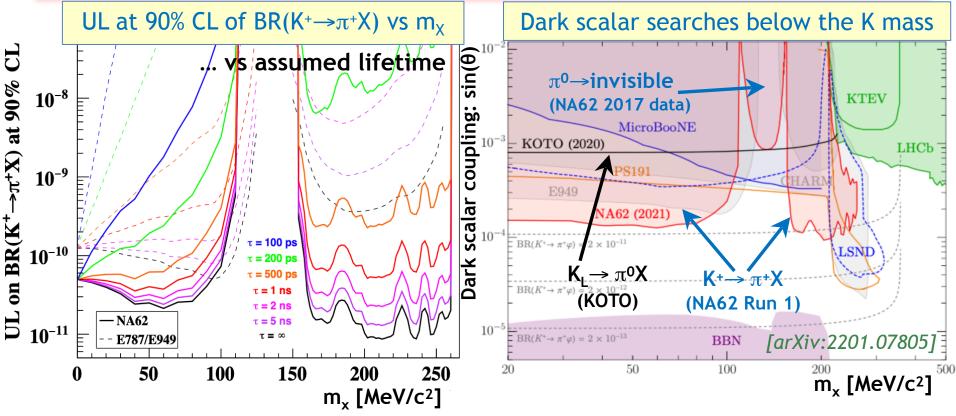


Fixed target runs at CERN SPS

- SPS fixed target operation foreseen until at least 2038.
- * HIKE ("High-Intensity Kaon experiment"): a long-term programme at the SPS proposed to search for new physics in kaon decays.
- Measurements of rare K+ and K_L kaon decay modes: a clear insight into the flavour structure of new physics.
- ❖ Details in a Snowmass white paper: arXiv:2204.13394.

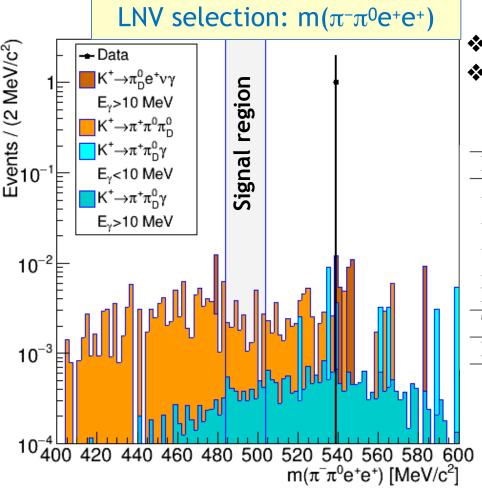

Summary and outlook

- * Rare kaon decays ($K \rightarrow \pi vv$, ...): unique probes for heavy new physics at the O(100 TeV) mass scale, and for light hidden sectors.
- ❖ Precision measurements of both K+ and K0 decays are essential.
- * NA62 is improving on BR(K+ $\rightarrow \pi^+ \nu \nu$), aiming at O(10%) precision by 2025.
- Next generation rare kaon experiments with high-intensity beams will provide a powerful tool to search for BSM physics.
- ❖ A long-term K⁺ and K_L programme ("HIKE") is taking shape at CERN.
- Other operating kaon experiments: KOTO at JPARC, LHCb at CERN. Both are planning ambitious future programmes.


Spares

HNL production search: data sample

- ❖ Triggers used: $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+ N$; Control/400 for $K^+ \rightarrow \mu^+ N$.
- Numbers of K+ decays in fiducial volume: $N_K = (3.52 \pm 0.02) \times 10^{12}$ in positron case; $N_K = (4.29 \pm 0.02) \times 10^9$ in muon case.
- ❖ Squared missing mass: $m_{miss}^2 = (P_K P_\ell)^2$, using STRAW and GTK trackers.



Search for $K^+ \rightarrow \pi^+ X$ (Run 1)

- ❖ Mass resolution improves with m_X and is $\delta m_X \sim 40$ MeV/c² at $m_X = 0$.
- \clubsuit Upper limits of BR(K+ $\to \pi$ +X) established depending on X mass and lifetime.
- ❖ Improvement on BNL-E949 [PRD79 (2009) 092004] over most of m_x range.
- Interpreted within the dark scalar and ALP (fermionic coupling) models
 [EPJ C81 (2021) 1015; arXiv:2201.07805]
- Note the KOTO result based on 2016-18 data. [PRL125 (2021) 021801]

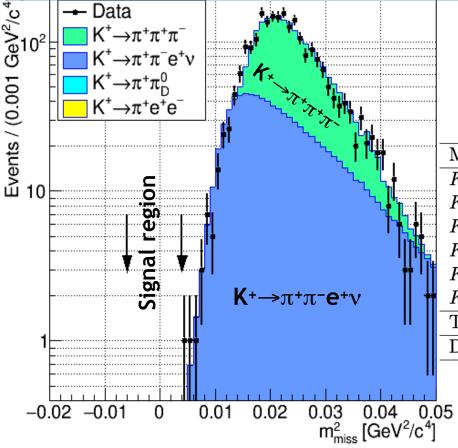
Search for $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ (Run 1)

[PLB830 (2022) 137172]

- ♦ Normalisation to the SM decay $K^+ \rightarrow \pi^+ e^+ e^-$.
- The neutral pion is reconstructed in the LKr calorimeter via $\pi^0 \rightarrow \gamma\gamma$ decay.

Mode	Control region	Signal region
$K^+ \to \pi^+ \pi^0 \pi^0_D$	0.16 ± 0.01	0.019
$K^+ ightarrow \pi^+ \pi_D^0 \gamma^-$	0.06 ± 0.01	0.004
$K^+ o \pi_D^0 e^{\overline{+}} u \gamma$	0.05 ± 0.02	_
$K^+ ightarrow \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

Expected background: 0.044±0.020 evt


Candidates observed: 0

BR(K+ $\to \pi^-\pi^0e^+e^+$)<8.5×10⁻¹⁰ at 90% CL

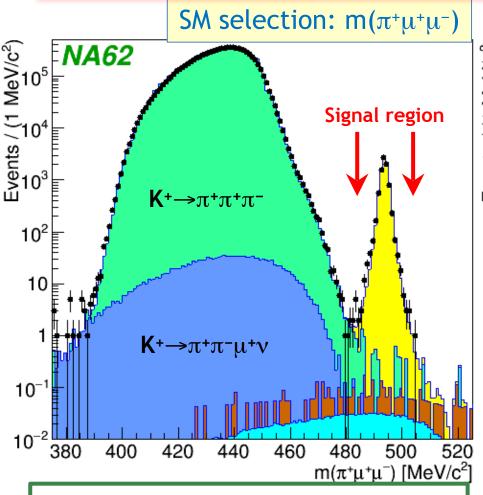
First search for this mode.

Search for $K^+ \rightarrow \mu^- \nu e^+ e^+$ (Run 1)

Squared missing mass, $(P_K - P_u - P_{e1} - P_{e2})^2$

[NEW, to be published]

- Either lepton flavour or lepton number is violated, depending on the neutrino flavour.
- ♦ Normalisation to the SM decay $K^+ \rightarrow \pi^+ e^+ e^-$.

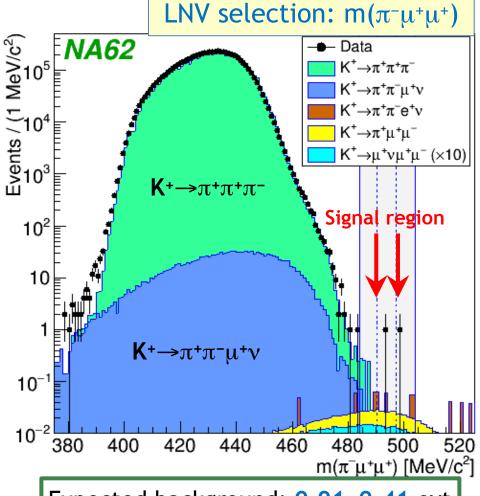

Mode / Region	Signal	Upper
$K^+ o \pi^+ \pi^+ \pi^-$	< 0.07	1412 ± 11
$K^+ \to \pi^+ \pi^+ \pi^- \text{ (upstream)}$	$0.06~\pm~0.03$	$1.5~\pm~0.3$
$K^+ ightarrow \pi^+ \pi^- e^+ u$	$0.16~\pm~0.02$	867 ± 1
$K^+ \to \pi^+ \pi^- e^+ \nu \text{ (upstream)}$	$0.01 ~\pm~ 0.01$	$0.14~\pm~0.03$
$K^+ o \pi^0_D e^+ u$	$0.01 ~\pm~ 0.01$	$0.02~\pm~0.01$
$K^+ ightarrow e^{\overline{+}} u \mu^+ \mu^-$	< 0.01	$0.05~\pm~0.02$
Total	0.26 ± 0.04	$2281 ~\pm~ 11$
Data	0	2271

Expected background: 0.26±0.04 evt

Candidates observed: 0

BR(K+ $\rightarrow \mu^- \nu e^+ e^+$)<8.1×10⁻¹¹ at 90% CL

Search for K+ $\rightarrow \pi^- \mu^+ \mu^+$ (2017 data)

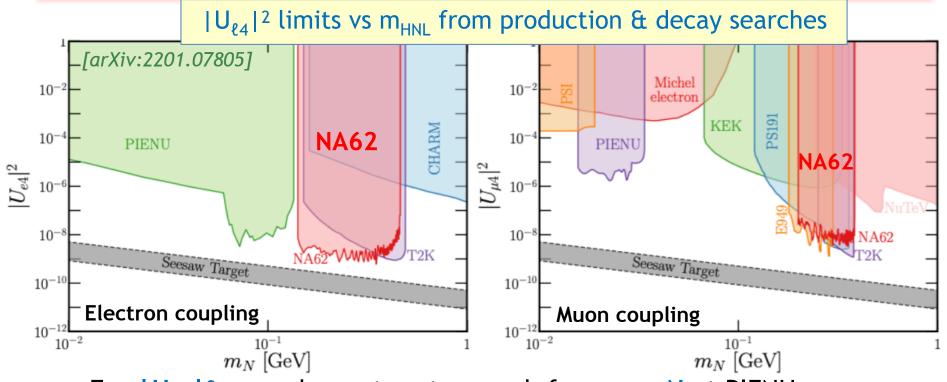


Candidates observed: 8357

Background: 0.07%

BR(K+ $\rightarrow \pi^+\mu^+\mu^-$) = (0.962±0.025)×10⁻⁷

K+ decays in FV: (7.94±0.23)×1011


Expected background: 0.91±0.41 evt

Candidates observed: 1

BR(K+ $\to \pi^-\mu^+\mu^+$)<4.2×10⁻¹¹ at 90% CL

[PLB797 (2019) 134794]

HNL production search: results

- ❖ For $|U_{e4}|^2$, complementary to search for π^+ → e^+N at PIENU.
- For $|U_{\mu 4}|^2$, complementary to search for $K^+ \rightarrow \mu^+ N$ at BNL-E949.
- ❖ In both cases, complementary to HNL <u>decay</u> searches at T2K.
- Future kaon and pion experiments will approach the seesaw bound.
- An upper limit at 90% CL: BR(K+ $\rightarrow \mu$ + $\nu\nu\nu$)<1.0×10⁻⁶, and similar limits on BR(K+ $\rightarrow \mu$ + ν X), with X=invisible.

Long-term plan: $K^+ \rightarrow \pi^+ \nu \nu$ at CERN

An in-flight $K^+ \rightarrow \pi^+ \nu \nu$ experiment, up to $\times 6$ the NA62 beam intensity, aiming at $\sim 5\%$ precision.

- ✓ Challenge: 20 ps time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- ✓ Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

New pixel beam tracker (GTK):

time resolution: <50 ps per plane;

pixel size: $<300\times300 \mu m^2$;

efficiency: >99% per plane (incl.fill factor);

material budget: $0.3-0.5\% X_0$;

beam intensity: >3 GHz on 30×60 mm²;

peak intensity: >8.0 MHz/mm².

New STRAW spectrometer:

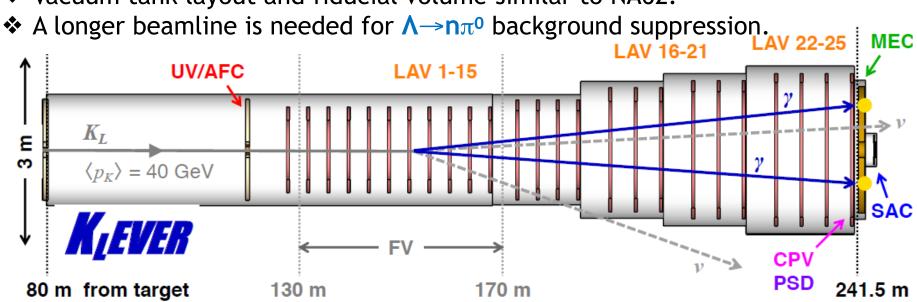
operation in vacuum;


straw diameter/length: 5 mm/2.2 m;

trailing time resolution: ~6 ns per straw;

maximum drift time: ~80 ns;

layout: ~21000 straws (4 chambers);


total material budget: $1.4\% X_0$.

A current NA62 STRAW chamber

Long-term plan: $K_1 \rightarrow \pi^0 \nu \nu$ at CERN

- * KLEVER: a high-energy experiment (1019 pot/year) complementary to KOTO.
- ❖ Photons from K₁ decays boosted forward: veto coverage only up to 100 mrad.
- ❖ Vacuum tank layout and fiducial volume similar to NA62.

Main detector/veto systems:

Target sensitivity:

60 SM $K_1 \rightarrow \pi^0 \nu \nu$ events with S/B~1

in 5 years of operation;

 $\delta BR(K_L \rightarrow \pi^0 \nu \nu)/BR(K_I \rightarrow \pi^0 \nu \nu) \sim 20\%$.

UV/AFC

LAV1-25

MEC

SAC

CPV

Small-angle vetoes

Charged particle veto

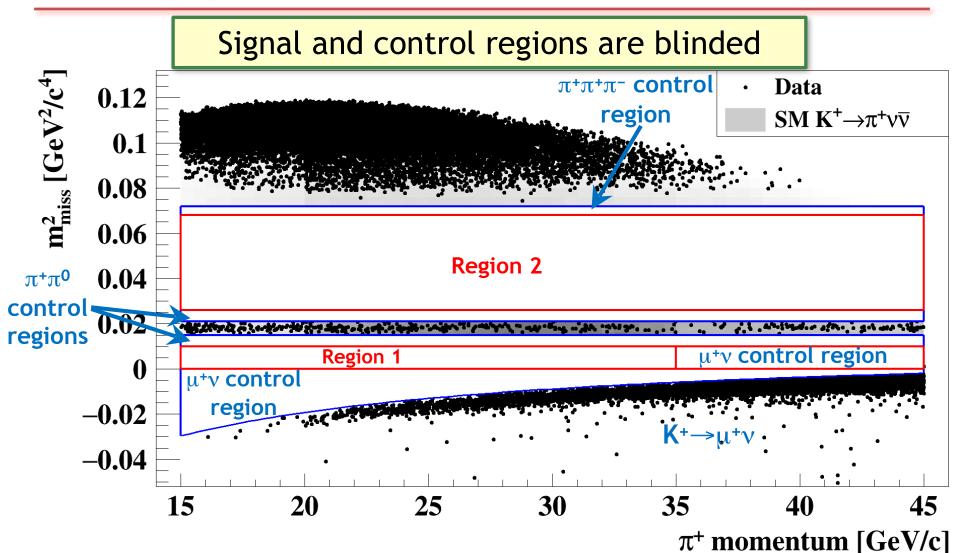
Upstream veto/Active final collimator

Large-angle vetoes (25 stations)

Main electromagnetic calorimeter

26

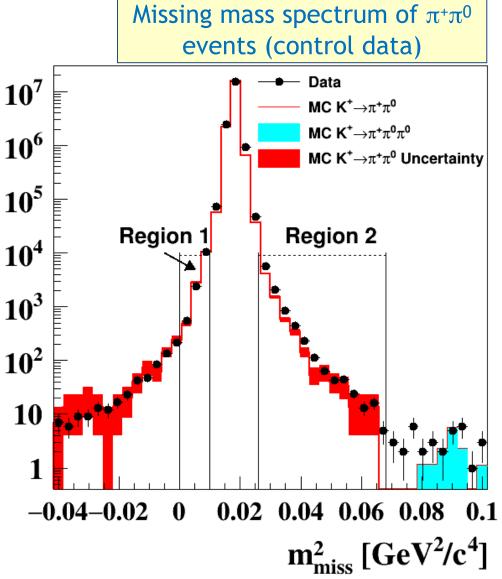
P Cooper / CIPANP 2022, 3 September 2022


PSD

Pre-shower detector

Long-term plan: a hybrid experiment

- ❖ Availability of high-intensity K⁺ and K_L beams at the SPS: measurements at the boundary of "high-intensity NA62" and KLEVER.
- \diamond An experiment for rare K_1 decays with charged particle detection:
 - ✓ K_I beamline, as in KLEVER;
 - ✓ tracking and PID for secondary particles, as in NA62.
- Physics objectives:
 - ✓ $K_L \rightarrow \pi^0 \ell^+ \ell^-$: the excellent $\pi^0 \rightarrow \gamma \gamma$ mass resolution is essential to reduce the Greenlee background $(K_L \rightarrow \gamma \gamma \ell^+ \ell^-)$;
 - ✓ lepton flavour violation: $K_L \rightarrow (\pi^0)(\pi^0)\mu e$, $K_L \rightarrow 2\mu 2e$;
 - ✓ precision measurements of rare radiative K₁ decays;
 - ✓ hidden sectors in K₁ decays.
- Characterisation of the neutral beam:
 - \checkmark measurements of K_1 , n, Λ and beam halo fluxes;
 - ✓ KOTO experience and KLEVER studies show this to be critical.
- Just getting started!


$K_{\pi\nu\nu}$ data after selection (2018)

After background evaluation, the control regions are opened first, to validate background expectations with the data.

28

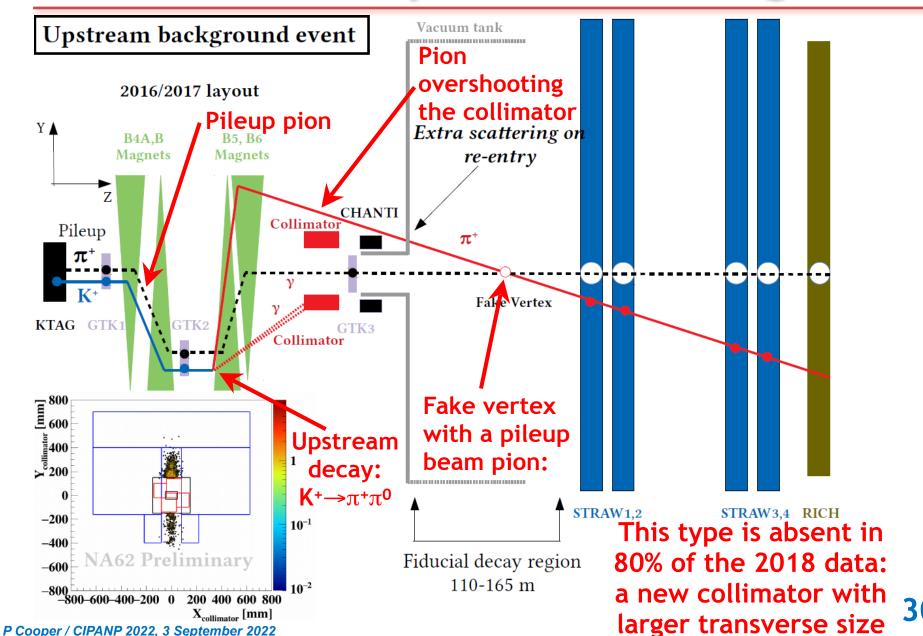
"Conventional" backgrounds

The largest background from K+ decays in the vacuum tank:

$$\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$$

 $(K^+ \rightarrow \mu^+ \nu)$ is treated similarly)

Data events in the $\pi^+\pi^0$ region after the $K_{\pi\nu\nu}$ selection

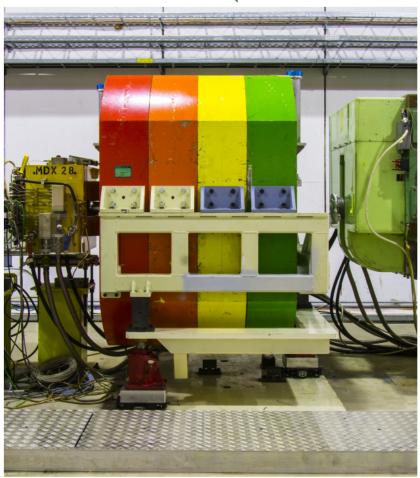

(including π^0 rejection)

$$(N_{BKG}) = (N(\pi^{+}\pi^{0}))(f_{kin})$$

Expected numbers of $K^+ \rightarrow \pi^+ \pi^0$ events in signal regions after $K_{\pi \nu \nu}$ selection

Fraction of $\pi^+\pi^0$ events in signal regions measured from control data

Upstream background



Collimator replacement

The old collimator

Current collimator (since June 2018)

The current collimator allows for a looser event selection: signal acceptance $A_{\pi\nu\nu}$ improved from 4.0% to 6.4%.