Hadronization at CLAS12 and Belle (II)

Anselm Vossen

Research supported by the

Office of Science

In a factorized picture, hadronization can be described by Fragmentation functions

- LO/LT: probability of finding hadron with momentum fraction z
- Observables:
 - -z: fractional energy of the quark carried by the hadron
 - p_{h,T}: transverse momentum of the hadron wrt the quark direction: **TMD FFs**

In a factorized picture, hadronization can be described by Fragmentation functions

Di-hadron fragmentation Functions

More degrees of freedom \rightarrow More information about correlations in final state

Parton polarization →	Spin averaged	longitudinal	transverse	
		G1 [⊥] (z,M,P _h ,θ)= T-odd, chiral-even →jet handedness QCD vaccum strucuture	H ₁ *(z,M, (P _h), θ)=. T-odd, chiral-odd Colinear	
dihadron plane ℓ $P_1 2R$ P_h				

Twist3: Accessing e(x) in di- and single hadron F_{LU}

<u>Di-hadrons:</u> extra degree of freedom of di-hadron FFs allow more targeted access

$$F_{LU}^{\sin\phi_R} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_{\pi\pi}) + \frac{1}{z} f_1^q(x) \tilde{G}(z, \cos\theta, M_{\pi\pi}) \right]$$

Boer-Mulders Force":

Transverse force exerted by color field on q↑ after scattering, in an unpolarized nucleon

Twist3: Accessing e(x) in di- and single hadron F_{LU}

<u>Di-hadrons:</u> extra degree of freedom of di-hadron FFs allow more targeted access

$$F_{LU}^{\sin\phi_R} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_{\pi\pi}) + \frac{1}{z} f_1^q(x) \tilde{G}(z, \cos\theta, M_{\pi\pi}) \right]$$

- In single hadrons: Complicated combination of four terms in the structure function.
- TMD factorization at twist-3 not yet proven!

Di-hadron fragmentation Functions

More degrees of freedom \rightarrow More information about correlations in final state

Parton polarization $ ightarrow$	Spin averaged	longitudinal	transverse
	Type equation here.	G1 [⊥] (z,M,P _h , θ)= T-odd, chiral-even →jet handedness QCD vaccum strucuture	H ₁ [*] (z,M, (P _h), θ)=. T-odd, chiral-odd Colinear

$$d^{9}\sigma_{LU} = -\sum_{a} \frac{\alpha^{2} e_{a}^{2}}{2\pi Q^{2} y} |\lambda_{e}| C(y) \frac{|\vec{R}_{T}|}{M_{h}} \left\{ \sin(\phi_{h} - \phi_{R}) \mathcal{I}\left[\frac{\vec{k}_{T} \cdot \hat{P}_{h\perp}}{M_{h}} f_{1} G_{1}^{\perp}\right] + \cos(\phi_{h} - \phi_{R}) \mathcal{I}\left[\frac{\hat{P}_{h\perp} \wedge \vec{k}_{T}}{M_{h}} f_{1} G_{1}^{\perp}\right] \right\}$$

CLAS12 Experimental Setup

- CLAS12: very high luminosity, wide acceptance, low Q² (higher twist measurements)
- Began data taking in Spring 2018 many "run periods" now available.
- 10.6 (2018) and 10.2 (2019) GeV electron beam, longitudinally polarized beam, liquid H₂ target.

Dihadron A_{LU} Measurements – Proton Target

• $\propto e(x)H_1^2$ point-by-point

New e(x) Extraction – Proton Flavor Combination

$$A_{LU}^{\sin\phi_R} \propto \frac{M}{Q} \frac{\sum_{q} e_q^2 \left[x e^q(x) H_{1,sp}^{\triangleleft,q}(z,m_{\pi\pi}) + \frac{m_{\pi\pi}}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,m_{\pi\pi}) \right]}{\sum_{q} e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,m_{\pi\pi})}$$
 (wist-3 DiFF

- Scenario I: Wandzura-Wilczek (WW) Approximation
 - Drop twist-3 DiFF
- Scenario II: Beyond WW approximation

C

 Estimate max integrated twist-3 DiFF from COMPASS A_{UL} and A_{LL}

CLAS12 Beam Spin Asymmetry Measurements

Twist 2

 $A_{LU} \sim f_1 G_1^{\perp |\ell,m\rangle}$

Next Step: Partial Wave analysis

- Transverse polarization dependent effect comes from interference effect
 - Here interference between different partial waves
 - Dihadron FF expands on a basis of spherical harmonics
 - Angular momentum eigenvalues | l, m >

→Explore dihadron fragmentation depending on relative angular momentum

CLAS12 Beam Spin Asymmetry Measurements

Twist 2

 $G_1^{\perp |\ell,m\rangle}$ $A_{LU} \sim f_1 G_1^{\perp |\ell, m\rangle}$ 0.060.04 ${
m A}_{
m LU}^{
m sin(\phi_h-\phi_{R_\perp})}$ 0.020.00 Ŧ Ŧ -0.02I I -0.04-0.060.20.40.60.81.01.21.4

> -0.03-0.04

> -0.05

0.4

0.6

0.8

In good agreement with spectator Model predictions

X Luo, H. Sun and Y.L. Xie, Phys. Rev. D., 101, 054020 (2020)

 M_h

12

1.4

clas

h1

Twist-2 A_{LU} at M_h Bins

e-Print: 2107.12965 [hep-ex]

Sensitive to $f_1 \cdot G_1^{\perp}$

Twist-2 A_{LU} at M_h Bins

e-Print: 2107.12965 [hep-ex]

Relation to Monte Carlo Event Generators (MCEGs)

Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner, A. al, *Comput.Phys.Commun.* 272 (2022))

Twist-2 A_{LU} Amplitudes

Future plans

More results and ongoing hadronization at CLAS12

• Di-hadrons

See also T. Hayward's talk

- Prelim results on deuterium target, pairs including π^0 (see backup)
- Analysis underway:
 - π/K , K/K pairs
 - Multiplicities
 - Target spin asymmetries
- Single hadrons
 - -Beam spin asymmetries: Phys.Rev.Lett. 128 (2022) 6, 062005
 - Multiplicities
- Λ hyperon production
 - Longitudinal spin transfer prelim results: In the proceedings of Spin 21: e-Print: <u>2201.06480</u> [nucl-ex]
 - Underway:
 - polarizing ↑ FF
- Back-to-back correlations to access fracture functions in BSAs: e-Print: <u>2208.05086</u>

Access of FFs for light mesons in e⁺e⁻ (spin averaged case)

$$\frac{1}{\sigma_{\rm tot}} \frac{d\sigma^{e^+e^- \to hX}}{dz} := \frac{1}{\sum_q e_q^2} \left(2F_1^h(z, Q^2) + F_L^h(z, Q^2) \right),$$

$$2F_1^h(z, Q^2) = \sum_q e_q^2 \left(D_1^{h/q}(z, Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left(C_1^q \otimes D_1^{h/q} + C_1^g \otimes D_1^{h/g} \right)(z, Q^2) \right)$$
hadronic jet had

Cleanest process→testbed for QCD calculations

Belle Experiment at KEK (1999 - 2010)

From: PTEP 2019 (2019) 12, 123C01, PTEP 2020 (2020) 2, 029201

+About $4x10^6$ events per fb^{-1} off-resonance

The future is now: Next Generation B factory SuperKEKB

Beam currents *only* a factor of two higher

"nano-beams" are the key; vertical beam size is 50nm at the IP

- Belle II already delivered world record luminosityEKB (~PEPII)
- Belle II will have 50× Belle luminosity (100 × BaBar) QCD program spelled out: "<u>Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper</u>" e-Print: 2204.02280 [hep-ex]

Polarized Hyperon Production

- Large Λ transverse polarization in unpolarized pp collision PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2) = [\bullet \rightarrow \bullet]$?
- Polarizing FF is chiral-even, has been proposed PRL105,202001 (2010) as a test of universality.
- FF counterpart of the Sivers function.
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed.

0.1 -0.1 -0.2 ATLAS √s = 7 TeV HERA-B √s = 42 GeV -0.3 △ E799 √s = 39 GeV vs = 29 GeV √s = 27 GeV -0.4 * M2 10⁻² 10^{-3} 10^{-1} 10^{-4} X_F

PRD 91, 032004 (2015)

Belle II Makes Precision Λ program possible!

First observation of Λ^{\uparrow} at Belle! (Here feed-down corrected)

Not shown: Associate production in tension with theory prediction→needs to be understood

• Opportunities at Belle II:

- Feed down correction for p_T dependence and associated production
 - (currently only for z dependence, introduces large uncertainties)
 - $\Lambda^{\uparrow} \Lambda^{\uparrow}$ correlations
 - Extension to tensor polarized FFs: e-Print: 2206.11742 [hep-ph]

•

- Explore low p_T region (not shown here) with higher statistics and better tracking resolution 25

First measurement of Interference Fragmentation Function $a_{12} \propto H_1^{<} * H_1^{<}$

Acceptance Impact on Partial Wave composition

θ

- Consider dependence of FFs on decay angle θ
- Higher order PWs lead to different moments in θ and ϕ
 - \rightarrow These are different FFs that are mixed by the acceptance
 - \rightarrow up to 10% effect on the extraction of transversity
 - ➔ Describe hadronization dynamics

→ Bridge between FFs and MCEGs

Belle Collaboration Phys.Rev. D96 (2017) no.3, 032005

• Belle II prospects: Sufficient statistics for full partial wave decomposition

Brand New Opportunities at Belle II: Precision Jet Physics in e^+e^-

- Jet physics (will) play an important role at the EIC and LHC
- Precision measurements in e⁺e⁻ annihilation will test current theoretical understanding
- Lower energies like Belle in particular sensitive to hadronization effects
- Example: Transverse
 Momentum Imbalance
 ← → TMD framework

Using $R = 1.0, E_{jet} > 3.75 \ GeV$,

Summary e^+e^-

- e^+e^- annihilation allow for precision studies of QCD
- Belle II will provide world record statistics for
 - Precision measurements of fragmentation functions with complex final states
 - -Tune MC generators
 - Probe Jet calculations at low scales where hadronization effects play a significant role
 - Constrain HVP, HIbI contributions to g-2
 - -Constrain α_S
 - Test QCD calculations of event shapes
 - More information in "<u>Opportunities for precision QCD physics in</u> <u>hadronization at Belle II -- a snowmass whitepaper</u>"

e-Print: 2204.02280 [hep-ex]

Save the Date

25th International Symposium on Spin Physics will be hosted by Duke University in Durham, NC September 24-29 2023

M_h Bins

Twist-2 F_{LU}/F_{UU} Amplitudes

CIC

$\mathbf{M}_{\mathbf{h}}$ Bins

FFs with single hadrons in the final state

- Analogue \rightarrow similar to PDFs encoding spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)

Parton polarization $ ightarrow$	Spin averaged	longitudinal	transverse
Hadron Polarization 🗸			
spin averaged	$D_1^{h/q}(z, p_T) = \left(\bullet \rightarrow \bigcirc \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right)$
longitudinal		$G_1^{\Lambda/q}(z, p_{=}) \rightarrow (-)$	$H_{1L}^{h/q}(z,p_T) \left[\underbrace{\bullet} \rightarrow \bigcirc \bullet \right] - \left[\underbrace{\bullet} \rightarrow \bigcirc \bullet \right]$
Transverse (here Λ)	$D_{1T}^{\perp\Lambda/q}(z,p_T) = \left(\bullet \rightarrow \bullet\right)$		$H_1^{\Lambda/q}(z, p_T) = \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$
		$G_{1T}^{h/q}(z,p_T) \left[\bullet \bullet \to \bullet \right] - \left[\bullet \bullet \to \bullet \right]$	$H_{1T}^{\perp\Lambda/\mathbf{q}}(z,p_T) = \left(\bullet \rightarrow \mathbf{p} \right) - \left(\bullet \rightarrow \mathbf{p} \right)$

- Encode Spin-Orbit correlations in hadronization
- Needed to access (spin dependent) parton structure of the nucleon
- Can probe fundamental QCD questions (e.g. $D_{1T}^{\perp} \leftrightarrow f_{1T}^{\perp}$)

Belle II prospects

- Higher order PWs lead to different moments in θ and ϕ
- In models, evolution of the different PWs different

- Important to have a full picture to understand mixing effects in ratios/partial integrals/acceptance
- Missing info from partial wave estimated to have effects up to 10% e.g. on extraction of transversity
- Full partial wave decomposition \rightarrow full description of two-particle correlations in hadronization

→Describe hadronization dynamics

→ Bridge between FFs and MCEGs

$\mathbf{M}_{\mathbf{h}}$ Bins

Helicity Balance: Comparison with HERMES

21 October 2021

M. McEneaney, Duke University

38

◆ z dependence of sin($\phi_h - \phi_R$) amplitude has a slow rise
 ◆ sin(2 $\phi_h - 2\phi_R$) may be relatively constant / decreasing

C. Dilks

C Dilks at CPHI 2022

C Dilks at CPHI 2022