

$B \rightarrow K$ form factors and associated phenomenology

Chris Bouchard, U. of Glasgow

with Will Parrott and Christine Davies

CIPANP 2022

Orlando, FL, 28 Aug - 5 Sep

- I. Motivation
- II. Form factor calculation via lattice QCD
- III. Phenomenology Parrot, Bouchard, and Davies, 2207.1337
- IV. Conclusion and outlook

attice QCD Parrot, Bouchard, and Davies, 2207.12468 d, and Davies, 2207.1337

Motivation: SM contribution small

- loop suppressed, amplitude $\propto G_F \sim 10^{-5} \,\mathrm{GeV}^{-2}$
- CKM suppressed, amplitude $\propto |V_{tb}V_{ts}| \sim 0.04$

SM suppression makes new physics effects potentially visible.

Motivation: SM contribution small

- measured by LHCb and will be measured by Belle-II

• persistent tension at low q^2 , need improved form factors

$\langle K | J_i | B \rangle$

hadronic matrix elements have:

• momentum transfer dependence, $0 \le q^2 \le q_{\text{max}}^2 = (M_B - M_K)^2$

$\langle K | J_i | B \rangle$

hadronic matrix elements have:

• momentum transfer dependence, $0 \le q^2 \le q_{\text{max}}^2 = (M_B - M_K)^2$ • short distance weak interactions: M_t , $M_W \sim O(100 \, \text{GeV})$

$\langle K | J_i | B \rangle$

hadronic matrix elements have:

- momentum transfer dependence: $0 \le q^2 \le q_{\text{max}}^2 = (M_B M_K)^2$
- short distance weak interactions: M_t , $M_W \sim O(100 \, \text{GeV})$
- long distance QCD interactions: $\Lambda_{\rm OCD} \sim 0.5 \, {\rm GeV}$

Physics at disparate scales factorizes (up to small corrections)

$$\frac{d\mathscr{B}}{dq^2} = \bigg| \sum_{i}^{l}$$

- Wilson coefficients: short distance, perturbative
- hadronic matrix elements: long distance, nonperturbative

$$C_i \langle K | J_i | B \rangle \Big|^2 + \dots$$

Form Factor calculation: matrix element via LQCD

 numerically evaluate path integral representation of 3pt correlator

 $\langle K(T) J(t) H(0)^{\dagger} \rangle$

- *H* a proxy for heavy meson, $M_D \leq M_H \leq M_R$
- ranges of t and T (also momenta, quark masses, lattice spacings, and volumes)
- produce data for 3pt correlator at each combination of *t* and *T*

• J specifies matrix element (scalar, vector, or tensor)

Form Factor calculation: matrix element via LOCD

• analyze t and T dependence of data to extract hadronic matrix element

$$\langle K(T) J(t) H(0)^{\dagger} \rangle = \sum_{l,m=0}^{\infty} \langle K | E_l^{(K)} \rangle \langle E_l^{(K)} | J | E_m^{(H)} \rangle \langle E_m^{(H)} | H^{\dagger} \rangle \frac{1}{\sqrt{2E_l^{(K)}}} \frac{1}{\sqrt{2E_m^{(H)}}} e^{-E_l^{(K)}(T-t)} e^{-E_m^{(H)}t}$$
for $l, m = 0$, gives $\langle K | J | H \rangle$

• form factors parameterize matrix elements

$$\langle K | S | H \rangle = \frac{M_H^2 - M_K^2}{m_h - m_s} f_0(q^2) \qquad Z_T(\overline{\text{MS}}, M_H) \langle K | T^{jo} | H \rangle = \frac{2iM_H p_K^j}{M_H + M_K} f_T(\overline{\text{MS}}, M_H; q^2)$$

 $Z_V \langle K | V^\mu | H \rangle = f_+(q^2) \left(p_H^\mu + p_K^\mu + p_$

$$\frac{M_{K}^{2} - M_{K}^{2}}{q^{2}} q^{\mu} + \frac{f_{0}(q^{2})}{q^{2}} \frac{M_{H}^{2} - M_{K}^{2}}{q^{2}} q^{\mu}$$

Form Factor calculation: matrix element via LQCD

• analyze t and T dependence of data to extract hadronic matrix element

$$\langle K(T) J(t) H(0)^{\dagger} \rangle = \sum_{l,m=0}^{\infty} \langle K | E_l^{(K)} \rangle \langle E_l^{(K)} | J | E_m^{(H)} \rangle \langle E_m^{(H)} | H^{\dagger} \rangle \frac{1}{\sqrt{2E_l^{(K)}}} \frac{1}{\sqrt{2E_m^{(H)}}} e^{-E_l^{(K)}(T-t)} e^{-E_m^{(H)}t}$$

• form factors parameterize matrix elements

$$\langle K | S | H \rangle = \frac{M_H^2 - M_K^2}{m_h - m_s} f_0(q^2) \qquad Z_T(\overline{N})$$

Z_V Calculated via PCVC related

Na, Davies, Follana

Calculated via RI-SMOM at 2 GeV (accounting $\overline{\text{AS}}, M_H$ for nonperturbative contributions) Hatton, Davies, Lepage, Lytle, PRD 102, 094509 (2020)

tion,
$$Z_V = \frac{m_h - m_s \langle K | S | H \rangle}{(M_H - M_K) \langle K | V^0 | H \rangle}$$

a, Lepage, PRD 82, 114506 (2010)

Form Factor calculation: extrapolate to real world

- $z(q^2) = \left(\sqrt{t_+ q^2} q^2\right)$ • trade q^2 for:
 - $|z| \ll 1$, allows series expansion of form factor (once pole removed)

- modified *z*-expansion fit
 - extrapolate to $a \to 0$, volume $\to \infty$, and quark masses \to physical
 - interpolate over full range of q^2

 a_n contains chiral, mistuning, heavy quark expansion, and discretization terms

$$a_{n} = (1 + L(m_{l}, V)) \left(1 + \epsilon_{n}\right) \left(1 + \rho_{n} \log\left(\frac{M_{H}}{M_{D}}\right)\right) \sum_{i,j,k,l=0}^{N_{ijkl}-1} d_{ijkln} \left(\frac{\Lambda}{M_{H}}\right)^{i} \left(\frac{am_{h}}{\pi}\right)^{2j} \left(\frac{a\Lambda}{\pi}\right)^{2k} \left(\frac{m_{\pi}^{2} - (m_{\pi}^{\text{phys}})^{2}}{(4\pi f_{\pi})^{2}}\right)^{l}$$

$$-\sqrt{t_+}/(\sqrt{t_+ - q^2} + \sqrt{t_+})$$
, where $t_+ = (M_H + M_H)$

$$f(q^2)\left(1 - \frac{q^2}{M_{\text{pole}}^2}\right) = \sum_n a_n z^n$$

1	
	\prec
- L.	\mathbf{O}

Form Factor calculation: extrapolate to real world

• bands show form factors in continuum, in for $m_h = m_b$

bands show form factors in continuum, infinite volume, with physical quark masses, and

Form Factor calculation: extrapolate to real world

- improved precision, especially at low q^2 , where it is needed
- errors statistics dominated, so improvement straightforward

• differential decay rate (or branching fraction $\mathscr{B} = \tau_B \Gamma$) is measured

 $\frac{d\Gamma(B \to K\ell)}{dq^2}$

$$a_{\ell} = \mathscr{C}\left[q^2 \left| \frac{F_P}{F_P} \right|^2 + \frac{\lambda(q, M_B, M_K)}{4} \left(\left| \frac{F_A}{F_A} \right|^2 + \right) \right]$$

$$c_{\ell} = -\frac{\mathscr{C}\lambda(q, M_B, M_K)\beta_{\ell}^2}{4} (|F_A|^2 + |F_V|^2)$$

• prediction depends on $F_{P,A,V}$ - functions of form factors and Wilson coefficients

$$\frac{e^{+}\ell^{-}}{2} = 2a_{\ell} + \frac{2}{3}c_{\ell}$$

$|F_V|^2 + 4m_\ell^2 M_B^2 |F_A|^2 + 2m_\ell (M_B^2 - M_K^2 + q^2) \operatorname{Re}(F_P F_A^*)|$

$$F_P = -m_{\mathcal{C}} C_{10} \Big[f_+ -$$

$$F_A = C_{10}f_+$$

$$F_V = \frac{C_9^{\text{eff},1} f_+}{M_B} + \frac{2m_b^{\overline{N}}}{M_B}$$

- $C_{0}^{\text{eff},1}$ includes nonfactoriazable and $\mathcal{O}(\alpha_{s})$ perturbative QCD corrections
- $C_7^{\text{eff},1}$ includes $\mathcal{O}(\alpha_s)$ corrections
- corrections amount to $< 1\sigma$ shift, slightly reducing tension with experiment

 $-\frac{M_B^2 - M_K^2}{a^2} (f_0 - f_+) \Big]$

 $\frac{MS}{b}(\mu_b) = C_7^{\text{eff},1} f_T(\mu_b)$

FNAL/MILC, PRD 93, 034005 (2016)

Focus on two well-behaved regions:

- $1.1 \le q^2/\text{GeV}^2 \le 6$: below $c\bar{c}$ resonances; improved precision and increased tension
- $15 \le q^2/\text{GeV}^2 \le 22$: above (dominant) $c\bar{c}$ resonances, include 2% uncertainty for others LHCb, Eur. Phys. J. C 77, 161 (2017)

- CDF '11
- LHCb '12A
- LHCb '14A

- LQCD calculation omits QED and in isospin limit, with $m_l = (m_u + m_d)/2$
- Differentiate between charged and neutral cases
 - 0.5% for form factor m_1
 - Missing final state radiation in experiment and no QED in form factors: 5% (2%) for *e* (µ) decay rates; 1% for R_K

Channel	Result	$q^2/{\rm GeV}^2$ range	$\mathcal{B} imes 10^7$	Tension with HPQCD '22
$B^+ \rightarrow K^+ e^+ e^-$	LHCb '21	(1.1, 6)	$1.401^{+0.074}_{-0.069}\pm 0.064$	-3.3σ (-3.0σ)
$B^+ \rightarrow K^+ e^+ e^-$	HPQCD '22 1	(1.1, 6)	$2.07 \pm 0.17 (\pm 0.10)_{ m QED}$	_
$B^+ \rightarrow K^+ e^+ e^-$	Belle '19	(1, 6)	$1.66^{+0.32}_{-0.29}\pm0.04$	-1.2σ (-1.2σ)
$B^+ \to K^+ e^+ e^-$	HPQCD '22	(1,6)	$2.11 \pm 0.18 (\pm 0.11)_{ m QED}$	_
$B^0 \to K^0 \mu^+ \mu^-$	LHCb '14A	(1.1, 6)	$0.92^{+0.17}_{-0.15}\pm 0.044$	-3.6σ (-3.5σ)
$B^0 o K^0 \mu^+ \mu^-$	HPQCD '22 1	(1.1, 6)	$1.74 \pm 0.15 (\pm 0.04)_{ m QED}$	_
$B^0 \to K^0 \mu^+ \mu^-$	LHCb '14A	(15, 22)	$0.67^{+0.11}_{-0.11}\pm 0.035$	-3.2σ (-3.1σ)
$B^0 o K^0 \mu^+ \mu^-$	HPQCD '22 1	(15, 22)	$1.16 \pm 0.10 (\pm 0.02)_{ m QED}$	_
$B^+ \to K^+ \mu^+ \mu^-$	Belle '19	(1, 6)	$2.30^{+0.41}_{-0.38}\pm 0.05$	$+0.4\sigma$ $(+0.4\sigma)$
$B^+ \to K^+ \mu^+ \mu^-$	HPQCD '22 1	(1, 6)	$2.11 \pm 0.18 (\pm 0.04)_{ m QED}$	_
$B^+ \to K^+ \mu^+ \mu^-$	LHCb '14A	(1.1, 6)	$1.186 \pm 0.034 \pm 0.059$	$-4.7\sigma~(-4.6\sigma)$
$B^+ \to K^+ \mu^+ \mu^-$	HPQCD '22 1	(1.1, 6)	$2.07 \pm 0.17 (\pm 0.04)_{ m QED}$	_
$B^+ \to K^+ \mu^+ \mu^-$	LHCb '14A	(15, 22)	$0.847 \pm 0.028 \pm 0.042$	-3.4σ (-3.3σ)
$B^+ \to K^+ \mu^+ \mu^-$	HPQCD '22 1	(15, 22)	$1.26 \pm 0.11 (\pm 0.03)_{ m QED}$	_

- consistent tension with LHCb

• single experiment (LHCb '14A, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $1.1 \le q^2/\text{GeV}^2 \le 6$) approaching 5σ

Phenomenology: $B \rightarrow K\ell^+\ell^-$ vs other theory

- C. Bobeth, G. Hiller, and G. Piranishvili
- C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker
- C. Bobeth, G. Hiller, and D. van Dyk

N. Gubernari, M. Reboud, D. van Dyk, and J. Virto

Phenomenology: $B \rightarrow K \nu \bar{\nu}$

- modest improvement in precision
- matches expected Belle-II precision at 50

-21	Decay	$\mathcal{B} imes 10^6$	Reference	
]	$B^0 \to K^0_S \nu \bar{\nu}$	< 13 (90% CL) Exp	p. [32] E	Belle '17
		< 49 (90% CL) Exp	p. [34] E	BaBar '13
	$R^0 \rightarrow K^0 \nu \bar{\nu}$	4.01(49)	[9] F	NAL '16
	$D \rightarrow \Lambda \nu \nu$	$4.1^{+1.3}_{-1.0}$	[37] V	Vang, Xiao '12
		4.67(35)	HPQCD '22	2
		< 16 (90% CL) Exp	p. [34]	
		< 19 (90% CL) Exp	p. [32]	
		< 41 (90% CL) Exp	p. [<mark>33</mark>] E	Belle II '21
	$B^+ \to K^+ \nu \bar{\nu}$	5.10(80)	$\left[75,78 ight]$ A	Altmanshoffer e
		$4.4^{+1.4}_{-1.1}$	[37]	Kamenik, S
		3.98(47)	[76] E	Buras et al '14
		4.94(52)	[9]	
		4.53(64)	[<mark>83</mark>] E	Buras, Venturini
T T		4.65(62)	[8 4] E	Buras, Venturini
		5.67(38)	HPQCD '22	2

$$ab^{-1}$$

Conclusions and Outlook

- 'Heavy HISQ' form factors most precise to date at low q^2 Parrot, Bouchard, and Davies, 2207.12468
 - statistics limited
 - other groups (e.g. FNAL/MILC) have calculations underway

Conclusions and Outlook

- 'Heavy HISQ' form factors most precise to date at low q^2 Parrot, Bouchard, and Davies, 2207.12468
 - statistics limited
 - other groups (e.g. FNAL/MILC) have calculations underway
- increased precision for phenomenology Parrot, Bouchard, and Davies, 2207.1337
 - approaching 5σ for single experiment

Conclusions and Outlook

- 'Heavy HISQ' form factors most precise to date at low q^2 $_{\rm Parrot,\ Bouchard,\ and\ Davies,\ 2207.12468}$
 - statistics limited
 - other groups (e.g. FNAL/MILC) have calculations underway
- increased precision for phenomenology Parrot, Bouchard, and Davies, 2207.1337
 - approaching 5σ for single experiment
- fully relativistic b quark removes EFT matching and improves q^2 coverage
 - form factor precision to match Belle-II expectations

Backup Slides

- MILC HISQ $n_f = 2 + 1 + 1$ gauge field configurations; all HISQ valence quarks
- *am_b* generates large discretization effects unless $a \leq 0.04 \,\mathrm{fm}$
- Instead, simulate over range of m_h , then extrapolate to m_h using HQET
- "Heavy HISQ" method

\mathbf{Set}	$a~({\rm fm})$	$N_x^3 \times N_t$	$n_{ m cfg} imes n_{ m src}$	$am_l^{ m sea/val}$	$am_h^{\rm val}$
1	0.15	$32^3 \times 48$	998×16	0.00235	0.8605
2	0.12	$48^{3} \times 64$	985 imes 16	0.00184	0.643
3	0.09	$64^{3} \times 96$	620×8	0.00120	0.433, 0.683, 0.8
4	0.15	$16^{3} \times 48$	1020×16	0.013	0.888
5	0.12	$24^3 \times 64$	1053 imes 16	0.0102	0.664, 0.8, 0.9
6	0.09	$32^{3} \times 96$	499×16	0.0074	0.449, 0.566, 0.68
7	0.06	$48^3 \times 144$	415×8	0.0048	0.274, 0.45, 0.6, 0
8	0.044	$64^{3} \times 192$	375 imes 4	0.00316	0.194, 0.45, 0.6, 0

Bazavov et al., PRD 82, 074501 (2010); Bazavov et al., PRD 87, 054505 (2012)

 $H \rightarrow K \ell^+ \ell^-$

Form Factor calculation: correlator fit stability

FIG. 2. Stability plot for different correlator fit choices on set 8, showing the mass of the ground-state non-goldstone Hmeson for $am_h = 0.6$, the ground-state energy of the K with twist $\theta = 4.705$ and T_{00}^{nn} for $am_h = 0.45, \ \theta = 2.235$. Test 0 is the final result, corresponding to $N_{exp} = 5$ exponentials.

FIG. 10. The form factors at q_{max}^2 and $q^2 = 0$ evaluated across the range of physical heavy masses from the D to the B. Other lattice studies [25, 28, 68, 69] of both $D \to K$ and $B \to K$ are shown for comparison. We also include some $B \to K$ results at $q^2 = 0$ from Gubernari et al. [70], a calculation using light cone sum rules. We do not include HPQCD's $D \to K$ results that share data with our calculation here [36]; see text for a discussion of that comparison. At the B end, data points are offset from M_B for clarity. Note that we have run Z_T to scale μ in this plot, where μ is defined linearly between 2 GeV and $m_b = 4.8$ GeV, according to Equation (26). The full running to 2 GeV from m_b results in a factor of 1.0773(17), applied to $f_T^{D \to K}$.

Form Factor calculation: error budget vs. q^2

Form Factor calculation: error budget by ensemble

• Blue are lattices with finest lattice spacing, needed to reach m_b

• Red are lattices with physical light quark mass

Phenomenology: inputs

Parameter	Value	Reference
$\eta_{ m EW}G_F$	$1.1745(23) \times 10^{-5} \mathrm{GeV}^{-2}$	[45], Eq. (7)
$m_c^{\overline{ ext{MS}}}(m_c^{\overline{ ext{MS}}})$	$1.2719(78){ m GeV}$	See caption
$m_b^{\overline{ ext{MS}}}(\mu_b)$	$4.209(21){ m GeV}$	[46]
m_c	$1.68(20){ m GeV}$	-
m_b	$4.87(20){ m GeV}$	-
${f_{K^+}}$	$0.1557(3){ m GeV}$	[47 - 50]
f_{B^+}	$0.1894(14){ m GeV}$	[51]
$ au_{B^0}$	$1.519(4)\mathrm{ps}$	[52]
$ au_{B^{\pm}}$	$1.638(4)\mathrm{ps}$	[52]
$1/lpha_{ m EW}(M_Z)$	127.952(9)	[45]
$\sin^2 heta_W$	0.23124(4)	[45]
$\left V_{tb}V_{ts}^{*} ight $	0.04185(93)	[53]
$C_1(\mu_b)$	-0.294(9)	[54]
$C_2(\mu_b)$	1.017(1)	[54]
$C_3(\mu_b)$	-0.0059(2)	[54]
$C_4(\mu_b)$	-0.087(1)	[54]
$C_5(\mu_b)$	0.0004	[54]
$C_6(\mu_b)$	0.0011(1)	[54]
$C_7^{\mathrm{eff},0}(\mu_b)$	-0.2957(5)	[54]
$C_8^{ m eff}(\mu_b)$	-0.1630(6)	[54]
$C_9(\mu_b)$	4.114(14)	[54]
$C_9^{\mathrm{eff},0}(\mu_b)$	$C_9(\mu_b) + Y(q^2)$	-
$C_{10}(\mu_b)$	-4.193(33)	[54]

Phenomenology: $B \rightarrow K\ell^+\ell^-$ corrections

•••• uncorrected C_7^{eff} corrected $C_7^{\rm eff}$

Corrections to C_7^{eff} are $\mathcal{O}(\alpha_s)$ perturbative QCD effects for all q^2

Phenomenology: $B \rightarrow K\ell^+\ell^-$ corrections

•••• uncorrected C_0^{eff} corrected C_{0}^{eff}

corrections to C_9^{eff} include:

- $\mathcal{O}(\alpha_s)$ perturbative QCD effects for all q^2
- non-factorizable corrections at low q^2

Beneke, Feldmann, Seidel, NPB 612, 25-58 (2001)

Phenomenology: R_K

• Ratio of differential branching fractions

$$R_{\ell_{2}}^{\ell_{1}}(q_{\text{low}}^{2}, q_{\text{upp}}^{2}) = \frac{\int_{q_{\text{low}}}^{q_{\text{upp}}^{2}} \frac{d\mathscr{B}_{\ell_{1}}}{dq^{2}} dq^{2}}{\int_{q_{\text{low}}}^{q_{\text{upp}}^{2}} \frac{d\mathscr{B}_{\ell_{2}}}{dq^{2}} dq^{2}}$$

- Hadronic uncertainties largely cancel
- LHCb '21 is 3.1σ from SM

Phenomenology: $B \rightarrow K\tau^+\tau^-$

improved precision over previous predictions

