|||;;

n-n' Oscillations Signals and Constraints

1

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

State Secretariat for Education, Research and Innovation SERI

Swiss Confederation

Q OVERVIEW

CIPANP Sep '22

Art from: New Scientist 242, 34 (2019)

Art from: ST Fandom, Capt. Jello

§1 Mirror Realm

Parity Violation (PV) in β-decay: Lee & Yang's PRL 104, 254 (1956)

Introduce Mirror realm hidden from standard model particles \rightarrow No global PV in weak interactions

SM, SM' Standard Model Particles , Mirror Realm Particles

 \mathcal{L}_{Mixing} , Neutral particle mixing (SM \leftrightarrow SM'): $\underline{n} \leftrightarrow \underline{n'}$, $\gamma \leftrightarrow \gamma'$, $\nu \leftrightarrow \nu'$

CIPANP Sep '22

For Mirror Matter Review: L. B. Okun, Phys. Usp. 50 380-389 (2006)

CIPANP Sep '22

Z. Berezhiani, Euro. Phys. J. C 64, 421 (2009).

When, B' = 0: Most older experiments...

 \vec{B} : magnetic field seen by SM particles, $\vec{B'}$: ... (SM') particles, β : angle between $\vec{B} \& \vec{B'}, \eta$: ratio between $\vec{B} \& \vec{B'}$ m_s : number of times neutrons bounced off the walls

CIPANP Sep '22

Z. Bereziani, Euro. Phys. J. C 64: 421-431 (2009)

Relax the condition, $B' \neq 0$ **: There are 2 channels of analysis**

Ratio	Asymmetry		
$E_B(t_s) = \frac{n_0(t_s)}{n_B(t_s)} - 1$ = $\frac{m_s \Delta_B}{\langle t_f \rangle} \frac{\eta^2 (3 - \eta^2)}{2\omega'^2 \tau_{nn'}^2 (1 - \eta^2)^2}$	$A_B(t_s) = \frac{n_B(t_s) - n_{-B}(t_s)}{n_B(t_s) + n_{-B}(t_s)}$ $= -m_s D_B Cos(\beta)$ $= -\frac{t_s}{\langle t_f \rangle} \frac{\eta^3 Cos\beta}{\omega^2 \tau_{nn'}^2 (1 - \eta^2)^2}$		
$m_s = t_s / \langle t_f \rangle$ $\eta = B / B'$			
\vec{B} : magnetic field seen by SM particles, $\vec{B'}$: (SM') particles, β : angle between $\vec{B} \& \vec{B'}$, η : ratio between $\vec{B} \& \vec{B'}$			

 m_s : number of times neutrons bounced off the walls

CIPANP Sep '22

Z. Bereziani, Euro. Phys. J. C 64: 421-431 (2009)

UCN Storage Experiment: Store UCNs, apply 0 and >0 magnetic fields, check if some neutrons vanished (into mirror realm)?

Regeneration Experiment ("Particle Through a Wall" kind of experiment): Shoot cold neutrons through a magnetic field onto a wall, check if neutrons can be detected on the other side of the wall under magnetic field?

LANL (USA)

TRIUMF (Canada)

- This*: C. Abel et. al., Phys. Lett. B. 812, 135993 (2021): τ_{nn'}>12s (95 % C.L.), B'≠0 , τ_{nn'}>388s (90 % C.L.), B'=0 [@PSI]
- N. Ayres et. al., Letter of Intent to PSI BVR 51 (2021)
- G. Ban et al., Phys. Rev. Lett. **99**, 161603 (2007): $\tau_{nn'}$ >103s (95 % C.L.), B'=0 [@ILL]
- A. P. Serebrov et al. Phys. Lett. B 663, 3, 181-185 (2008): τ_{nn} > 448s (90 % C.L.), B'=0 [@ILL]
- I. Altarev et al., Phys. Rev. D 80, 032003 (2009): τ_{nn'}>12s (95 % C.L.), B'≠0 [@ILL]

UCN Storage Experiments

ESS PNPI (Russia)

TUM (Germany) RCNP (Japan)

PSI (Switzerland)

ILL (France)

- L. Broussard et. al., Proceedings of 2017 DPF Meeting: [@ORNL] {Phys. Rev. Lett. 128 212503}
- U. Schmidt, Proceedings of 2007 BLNV Workshop: τ_{nn'}>2.7s (90 % C.L.), B'=0 [@FRM-II]

Regeneration Experiments

Dominated by: Disappearance Experiments

Look for magnetic field dependence of number of neutrons stored for time: t_s

Z. Berezhiani, Euro. Phys. J. C 64, 421 (2009).

Further analysis by Berezhiani et al., of storage type experiments:

§2 nEDM@PSI Apparatus

Courtesy: C. Abel et al., PPNS 2018 (2019): arXiv [1811.04012].

Data collected in <u>runs</u> (table), each runs is made up of many <u>cycles</u> (bottom).

B - Pattern	t* _s (t _t)/s	Β _{max} /μΤ	# Cycles
01010101010101010	180 (300)	10	1616
01010101010101010	380 (500)	10	2908
01010101010101010	180 (300)	20	1296
01010101010101010	380 (500)	20	1992

<u>Cycle Time:</u> A: filling phase B: monitor phase C: storage phase, and D: emptying phase

§3 Mean Time of Flight

<t_f> is dependent on the energy spectra of the UCNs.

Energy spectra from a fit of a loss model to the measured storage curve.

CIPANP Sep '22

17

CIPANP Sep '22

C. Abel et al., Phys. Lett. B. 812, 135993 (2021).

Constraints in Ratio Channel

§4

Combining the scaling function, $f_{E_B}(\eta)$, with constraints on $\tau_{nn'}^{B'\neq 0, E_B} / \sqrt{|f_{E_B}(\eta)|}$ in appropriate range of B'

Dashed constraint for PSI nEDM neglects errors from uncertainty in energy spectra (like all the other constraints)

§4 Constraints on fixed angle - β

There have been measurements at ILL and PSI. If β was a fixed value, then it would be different at PSI and at ILL. We can constrain β using measurements from the 2 locations, under the assumption that the angle - β is fixed to the reference frame of the Earth

Allowed regions

CIPANP Sep '22

Assuming all the vectors lie in the same plane

[A] C. Abel et al., *Phys. Lett. B.* **812**, 135993 (2021).
[B] P. Mohanmurthy et al., *Symmetry* **14**, 487 (2022)

 $\tau_{nn'}^{E_{\mathbf{B}}} > 6 \ s \ \forall \ B' \in (0.38, 25.66) \ \mu T \ @ 95 \ \% \ C. L.$

$$\begin{split} \tau^{A_{\mathbf{B}}}_{nn'} &> 9 \, s \, \forall \, B' \, \in (5.04, 25.39) \, \mu T @ \, 95 \, \% \, C.L. \\ \tau^{A^{\Omega_{\oplus}}_{\mathbf{B}}}_{nn'} &> 7 \, s \, \forall \, B' \, \in (4.40, 24.43) \, \mu T @ \, 95 \, \% \, C.L. \\ \tau^{d_n}_{nn'} &> 5.7 \, s \, \forall \, B' \, \in (0.36, 1.01) \, \mu T @ \, 95 \, \% \, C.L. \end{split}$$

Relevant Result Papers:

[1] G. Ban et al., Phys. Rev. Lett. 99 (2007) 161603.
[2] A. P. Serebrov et al., NIMA 611, 137–140 (2009); Phys. Lett. B 663, 181 (2008).

- [3] I. Altarev et al., Phys. Rev. D 80, 032003 (2009).
- [4] Z. Berezhiani, EPJ C 64 (2009) 421.
- [5] Z. Berezhiani and F. Nesti, EPJ C 72, 1974 (2012).
- [6] Z. Berezhiani et al., EPJ C 78, 717 (2018).

