### Latest Atmospheric Neutrino Oscillation Results from Super-Kamiokande

Thomas Wester, Boston University CIPANP 2022 2022 August 30







Office of Science

### Neutrino Oscillations

Neutrino flavor oscillations arise from differences in masses between mass states. Leading-order oscillations between two flavors in vacuum via:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

Unknowns:

- Value of  $\delta_{CP}$
- Octant of  $\theta_{23}$
- **Neutrino mass ordering**: One heavy and two light neutrinos, or the other way around? Sign of  $\Delta m_{31}^2$ 
  - $\rightarrow$  Implications for oscillations,  $0\nu\beta\beta$ , supernova, cosmology



$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

08/30/2022

#### **Atmospheric Neutrinos**



Neutrinos produced from particle showers in Earth's atmosphere

- Flavors:  $\nu_{\mu},\,\nu_{e}\sim$  2:1 ratio, both neutrinos and anti-neutrinos
- $E_{\nu}$ : ~ few MeV TeV range.
- Baseline: Parametrized by zenith angle  $\theta_z$ , ~15 km 13,000 km

**Matter effect**:  $v_e$  and  $v_e$  passing through dense inner layers of the earth experience modified potential, differs for neutrinos and anti-neutrinos

$$i\frac{d}{dt}\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^2}{4E}\cos 2\theta \pm \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E}\sin 2\theta\\\frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta\end{array}\right)\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right)$$

*2 flavor example of adding matter potential to neutrino Hamiltonian* 

08/30/2022

#### Atmospheric Neutrino Oscillations

Signature of mass ordering from either enhanced  $v_e$  or  $v_e$ appearance with  $E_v$  ~few GeV, due to matter effects



## Super-Kamiokande

Particle observatory in Japan with broad physics program: Nucleon decay, neutrinos, dark matter...

#### • 20+ years of continued operation

5 pure water phases from 1996–2020, 6511 live days. Now running with dissolved gadolinium (SK-Gd)

#### • 50 kT water volume

>11,000 PMTs inner detector & >1,800 PMTs in outer detector

#### Cherenkov radiation

Provides PID, energy & direction reconstruction of charged particles



#### 08/30/2022

1996

SK Atmospheric Neutrino Oscillation • Thomas Wester • CIPANP 2022

This analysis, pure water only

## New for 2022: Expanded Fiducial Volume

- Previous: vertex cut >2m from walls  $\rightarrow$  22.5 kT fiducial volume
- Events in 1-2m wall region studied, acceptable backgrounds, systematics & resolution established for all SK periods

#### +20% statistics, total exposure: 0.48 MT·Years





Phys. Rev. D 102, 112011 (2020) 08/30/2022

### **Oscillation Analysis Event Selection**



08/30/2022

#### Multi-GeV $v_e$ Samples

d.e. = Decay electron



08/30/2022

#### Multi-GeV $v_e$ Samples

d.e. = Decay electron



08/30/2022

### Multi-GeV $v_e$ Data

Preliminary



08/30/2022

SK Atmospheric Neutrino Oscillation • Thomas Wester • CIPANP 2022

SK I-V, expanded FV: ~5.5k  $v_e$  and  $\overline{v_e}$ 

### Super-Kamiokande 2022 Results

 $\begin{array}{l} \chi^2 \mbox{ minimization with pull terms} \\ 930 \mbox{ bins, } sin^2 \theta_{23}, \mbox{ } \Delta m^2 _{23}, \mbox{ } \delta_{CP} \mbox{ free} \\ \mbox{ With reactor constraint:} \\ sin^2 \theta_{13} = 0.0220 \pm 0.0007 \end{array}$ 



| Best fits | χ²      | Δm² <sub>31</sub>   [eV²] | sin²θ <sub>23</sub> | δ <sub>ср</sub> |
|-----------|---------|---------------------------|---------------------|-----------------|
| Normal    | 1000.42 | 2.4×10 <sup>-3</sup>      | 0.49                | 4.71            |
| Inverted  | 1006.19 | 2.4×10 <sup>-3</sup>      | 0.49                | 4.71            |

08/30/2022

### Super-Kamiokande 2022 Results

 $\begin{array}{l} \chi^2 \mbox{ minimization with pull terms} \\ 930 \mbox{ bins, } sin^2 \theta_{23}, \mbox{ } \Delta m^2 _{23}, \mbox{ } \delta_{CP} \mbox{ free} \\ \mbox{ With reactor constraint:} \\ sin^2 \theta_{13} = 0.0220 \pm 0.0007 \end{array}$ 



| Best fits | χ²      | Δm <sup>2</sup> <sub>31</sub>   [eV <sup>2</sup> ] | sin²θ <sub>23</sub> | δ <sub>ср</sub> |
|-----------|---------|----------------------------------------------------|---------------------|-----------------|
| Normal    | 1000.42 | 2.4×10 <sup>-3</sup>                               | 0.49                | 4.71            |
| Inverted  | 1006.19 | 2.4×10 <sup>-3</sup>                               | 0.49                | 4.71            |

08/30/2022

# Constraints from T2K

Mass ordering analysis improves with constraints on other oscillation parameters  $|\Delta m^2_{31}|$ ,  $\sin^2\theta_{23}$ ,  $\delta_{CP}$ ...

T2K long-baseline experiment is a natural choice:

- Precise measurement of |Δm<sup>2</sup><sub>31</sub>| & sin<sup>2</sup>θ<sub>23</sub>, and sensitive to δ<sub>CP</sub> due to known v direction, fixed baseline, narrow energy spectrum & pure v or v beam
- Shared systematics with SK: Cross section uncertainties can be correlated
- → Large matter effect in atmospheric vs is complementary to precision measurements from beam vs for studying mass ordering



### Result with T2K Constraints

 $\begin{array}{l} \chi^2 \mbox{ minimization with pull terms} \\ 1020 \mbox{ bins, } \sin^2\!\theta_{23}, \mbox{ } \Delta m^2_{23}, \mbox{ } \delta_{CP} \mbox{ free} \\ \mbox{ With reactor constraint:} \\ \sin^2\!\theta_{13} = 0.0220 {\pm} 0.0007 \end{array}$ 

**Note**: External modeling of T2K by SK, using published runs 1-9 data and SK MC re-weighted to T2K flux & xsec. inputs.



| Best fits | χ²      | Δm <sup>2</sup> <sub>31</sub>   [eV <sup>2</sup> ] | sin <sup>2</sup> $\theta_{23}$ | δ <sub>ср</sub> |  |
|-----------|---------|----------------------------------------------------|--------------------------------|-----------------|--|
| Normal    | 1086.33 | 2.4×10 <sup>-3</sup>                               | 0.53                           | 4.54            |  |
| Inverted  | 1095.25 | 2.4×10 <sup>-3</sup>                               | 0.53                           | 4.71            |  |

08/30/2022

### Result with T2K Constraints

 $\begin{array}{l} \chi^2 \mbox{ minimization with pull terms} \\ 1020 \mbox{ bins, } \sin^2\!\theta_{23}, \mbox{ } \Delta m^2_{23}, \mbox{ } \delta_{CP} \mbox{ free} \\ \mbox{ With reactor constraint:} \\ \sin^2\!\theta_{13} \mbox{=} 0.0220 \mbox{\pm} 0.0007 \end{array}$ 

**Note**: External modeling of T2K by SK, using published runs 1-9 data and SK MC re-weighted to T2K flux & xsec. inputs.



| <b>Best fits</b> | χ²      | Δm <sup>2</sup> <sub>31</sub>   [eV <sup>2</sup> ] | sin <sup>2</sup> $\theta_{23}$ | δ <sub>ср</sub> |  |
|------------------|---------|----------------------------------------------------|--------------------------------|-----------------|--|
| Normal           | 1086.33 | 2.4×10 <sup>-3</sup>                               | 0.53                           | 4.54            |  |
| Inverted         | 1095.25 | 2.4×10 <sup>-3</sup>                               | 0.53                           | 4.71            |  |

08/30/2022

### Result with T2K Constraints

 $\chi^2$  minimization with pull terms 1020 bins, sin<sup>2</sup> $\theta_{23}$ ,  $\Delta m^2_{23}$ ,  $\delta_{CP}$  free With reactor constraint: sin<sup>2</sup> $\theta_{13}$ =0.0220±0.0007

**Note**: External modeling of T2K by SK, using published runs 1-9 data and SK MC re-weighted to T2K flux & xsec. inputs.



| Best fits | χ²      | Δm² <sub>31</sub>   [eV²] | sin <sup>2</sup> $\theta_{23}$ | δ <sub>ср</sub> |
|-----------|---------|---------------------------|--------------------------------|-----------------|
| Normal    | 1086.33 | 2.4×10 <sup>-3</sup>      | 0.53                           | 4.54            |
| Inverted  | 1095.25 | 2.4×10 <sup>-3</sup>      | 0.53                           | 4.71            |

08/30/2022

### Happening Now: SK-Gd

#### High-efficiency neutron capture with

gadolinium thanks to large neutron capture cross section, higher total gamma energy & faster capture time than hydrogen





#### • Oscillation analysis improvements:

- Better  $v_e/v_e$  separation: observe many more neutron captures than on hydrogen
- Improved direction & energy reconstruction: Incorporate neutron vertex & multiplicity

#### Multi-GeV Events in SK-Gd



#### 08/30/2022

Summary

SK Atmospheric Neutrino Oscillation • Thomas Wester • CIPANP 2022

#### 15/21

- \* SK is better than ever. New data after refurbishment & running with gadolinium NOW!
- baseline experiments
- \* Atmospheric neutrinos are complementary to long

#### SK 2022: Δχ<sup>2</sup><sub>I.O.-N.O.</sub> ≈ 5.8

\* Atmospheric neutrinos are an important data set for determining the neutrino mass ordering





### Thank you!



Super-Kamiokande collaboration @ Toyama, Japan. November 2019

08/30/2022

SK Atmospheric Neutrino Oscillation • Thomas Wester • CIPANP 2022

16/21

#### Backup Slides

### **SK Analysis History**

| Result              | Livetime Fiducial<br>(Days) Volume (k | Fiducial    | # of         | Noutrop  | Multi-Ring<br>Selection | NEUT<br>Version | sin²θ <sub>13</sub> -Constrained Results |                                                                    |               |                 |
|---------------------|---------------------------------------|-------------|--------------|----------|-------------------------|-----------------|------------------------------------------|--------------------------------------------------------------------|---------------|-----------------|
|                     |                                       | Volume (kT) | # Of<br>Bins | tagging? |                         |                 | $sin^2 \theta_{23}$                      | Δm <sup>2</sup> <sub>32</sub><br>×10 <sup>-3</sup> eV <sup>2</sup> | $\delta_{CP}$ | Δχ²<br>I.O N.O. |
| 2018 PRD            | 5326                                  | 22.5        | 520          | No       | Likelihood              | 5.3.6           | 0.59                                     | 2.5                                                                | 4.18          | 4.3             |
| 2020<br>Preliminary | 6050                                  | 22.5        | 930          | Yes      | BDT                     | 5.4.0           | 0.45                                     | 2.4                                                                | 4.54          | 3.4             |
| 2022<br>Preliminary | 6511                                  | 27.2        | 930          | Yes      | BDT                     | 5.4.0           | 0.49                                     | 2.4                                                                | 4.71          | 5.8             |

08/30/2022

### More on the SK Mass Ordering Result

Excess in  $v_e$  signal region drives the preference for normal ordering

- Previously observed, excess mainly in SK IV conventional fiducial volume events
- CL<sub>s</sub>-corrected *p*-value from 2018 result (5326 days, conventional FV) set preference for normal ordering at 93% level, less than simple  $\sqrt{\Delta\chi^2} \sim 98\%$  from fit

#### Stay tuned for final *p*-value in progress & paper in prep.

## T2K Modeling

#### Use published T2K Run 1-9 data & SK MC re-weighted to T2K flux and cross sections for this analysis

- Re-weighting provides flexibility to check impact of cross section models on final result
- Can apply some T2K near detector cross section constraints to SK atmospheric data
- Compromises: Use more conservative systematic errors for pion final state interactions & 2p2h process due to differences in treatment between SK & T2K
- A SK+T2K analysis group with members from both collaborations is working to unify cross section modeling for a formal joint fit



T2K  $v_e$  data & SK MC. MC has T2K fluxes & cross section models applied as re-weighting factors

#### SK+T2K Model Individual Fits



08/30/2022