Baryon Number-Violating Amplitudes on a Lattice with Physical Chirally-Symmetric Quarks

Sergey Syritsyn,

with Enrico Rinaldi, Michael Wagman, Jun-Sik Yoo, Taku Izubuchi, Amarjit Soni, Peter Boyle, Yasumichi Aoki

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP) Orlando, FL, Aug 31, 2022

Neutron-antineutron oscillation amplitudes

Experimental lifetime limits & outlook Nucleon model uncertainties Hadron masses and energies Extraction of matrix elements Operator renormalization

Proton decay amplitudes Experimental lifetime limits & outlook Effective operators for $p \rightarrow \pi \ell$, $K\ell$ decays Momentum & continuum extrapolations Proton decay constants ($p \rightarrow 3\ell$)

Summary&Outlook

Baryogenesis and Broken Symmetries

Baryon Number : accidental symmetry of SM, violated by sphalerons

- neutron-antineutron oscillations ($\Delta B=2$)
- proton decay ($\Delta B=1$)

Missing piece of Grand-Unified Theories

Limit on nuclear matter stability?

```
Sergey Syritsyn
```

BNV Amplitudes from Lattice QCD

∆B=2 Number Violation : n–n Oscillations

Baryon number not conserved $? \Rightarrow$ (anti)neutrons are not energy eigenstates:

• (n, \overline{n}) Hamiltonian with $\Delta B=2$ $\mathcal{H} = \begin{pmatrix} n \\ \overline{n} \end{pmatrix}^{\dagger} \begin{pmatrix} M_n + \frac{1}{2}\Delta M & \delta m \\ \delta m & M_n + \frac{1}{2}\Delta M \end{pmatrix} \begin{pmatrix} n \\ \overline{n} \end{pmatrix}$ • n $\rightarrow\overline{n}$ transition probability $P_{n\rightarrow\overline{n}}(t) \approx \left[\frac{2\delta m}{\Delta M}\right]^2 \sin^2\left[\frac{1}{2}\Delta M t\right]$

■ If
$$t \ll (\Delta M)^{-1}$$
 : n→ \overline{n} transition in $\tau_{n\overline{n}} = (2\delta m)^{-1}$
■ current limit $\delta m \leq (10^8 \, \text{s})^{-1} \approx O(10^{-24}) \, \text{eV}$

Medium effects dominate $\Delta M \gg \delta m$

In vacuum ("quasi-free" n—n) B~0.5 Gauss:

$$\Delta M = 2\mu_n B_{\oplus} \approx 6 \cdot 10^{-12} \text{ eV}$$

In nuclei :

 $\Delta M \sim O(100 \,\mathrm{MeV})$

N–N Oscillations: Experimental Status

"Quasi-free" reactor neutrons
 ILL Grenoble high-flux reactor
 [M.Baldo-Ceolin et al, 1994)]

 $\tau_{n\bar{n}} \gtrsim 10^8 \, s$ $\delta m \lesssim 6 \cdot 10^{-24} \, \mathrm{eV}$

In nuclei :

• τ (⁵⁶*Fe*) ≥ 0.72·10³² yr

 $\implies \tau_{N\bar{N}} \gtrsim 1.4 \cdot 10^8 \text{ s}$ [Soudan]

- $\tau(^{16}O) \gtrsim 1.77 \cdot 10^{32} \text{ yr}$
 - $\implies \tau_{N\bar{N}} \gtrsim 3.3 \cdot 10^8 \text{ s}$ [Super-K]
- τ (²*H*) ≈ 0.54·10³² yr
 - $\implies \tau_{N\bar{N}} \gtrsim 1.96 \cdot 10^8 \text{ s}$ [SNO]

Nuclear decays from ($\Delta B=2$) transitions: suppressed by nuclear medium:

 $T_d = R\tau_{n\bar{n}}^2$ $R \sim 10^{23} \, \text{s}^{-1}$

nuclear model uncertainty ~ 10-15% for ¹⁶O [E.Friedman, A.Gal (2008)]

SoudanSuper KamiokandeSNOSensitivity is limited by atmospheric neutrinos

N–N: Experimental Outlook

Maximize Probability of oscillation ~ N_n ($T_{\rm free}$)²

- Shielded beam (similar to ILL): Expected sensitivity x**10²-10³** ILL $\tau_{n-\overline{n}} \gtrsim 10^9$ -10¹⁰ s
 - Spallation sources: x12 flux @ESS
 - Elliptic focussing mirror
 - Better magnetic shielding (B < 1 nT)

[Phillips et al, arXiv:1410.1100]

stored ultra-cold neutrons $\tau_{n-\overline{n}} \gtrsim 2.2 \cdot 10^8 \text{ s}$

- Further improvements
 - Larger vessels
 - Better magnetic shielding (B < 1 nT)</p>
 - Parabolic floor concentrators
 - Multiple coherent reflections

BSM Models and QCD Input

∆B=2 Operators

Classification of all $\Delta I=1$ 6-quark operators

- Light-flavor SU(2)_f multiplets
 [T.Kuo, S.Love, PRL45:93 (1980);
 S.Rao, R.Shrock, PLB116:238 (1982)]
- 2-loop perturbative running [Buchoff, Wagman, PRD93:016005(2015)]

$$(q_1q_2) \doteq (q_1^T C q_2)$$
$$(q_1q_2)^A \in (\overline{\mathbf{3}}_{\text{color}}, \mathbf{1}_{\text{flavor}})$$
$$(q_1q_2)^S \in (\mathbf{8}_{\text{color}}, \mathbf{3}_{\text{flavor}})$$

$$(\mathbf{1}_L, \mathbf{7}_R) \qquad Q_4 = -\frac{4}{5} \left[(uu)(dd) + 4(ud)_R(ud) \right]_{RR}^{S_1 S_2} (dd)_R^{S_3} T^{S_1 S_2 S_3}$$

 $Q_1 = -4 \, (ud)_R^{A_1} \, (ud)_R^{A_2} \, (dd)_R^{S_3} \, T^{A_1 A_2 S_3}$

 $Q_2 = -4 \, (ud)_L^{A_1} \, (ud)_R^{A_2} \, (dd)_R^{S_3} \, T^{A_1 A_2 S_3}$

 $Q_3 = -4 \, (ud)_L^{A_1} \, (ud)_L^{A_2} \, (dd)_R^{S_3} \, T^{A_1 A_2 S_3}$

$$(\mathbf{3}_L, \mathbf{5}_R)$$
 $Q_5 = (uu)_R^{S_1} (dd)_L^{S_2} (dd)_L^{S_3} T^{S_1 S_2 S_3}$ (not SU(2)_L-symmetric)
(and also $Q_{6,7}$ related by Wigner-Eckart thm)

Must have chiral symmetry to protect the operators from mixing

 $(\mathbf{1}_L,\mathbf{3}_R)$

BNV Amplitudes from Lattice QCD

Fundamental Theory: QCD on a Lattice

Lattice correlation fcn. for $\langle \overline{n} | Q_{\alpha} | n \rangle$ matrix elements [M.Buchoff, C.Schroeder, J.Wasem PRD93:016005(2015)]

Lattice Details

- - 2268 (28 x 81) MC samples

$\textbf{n} \leftrightarrow \overline{\textbf{n}} \textbf{ Amplitudes: Ground and Excited States}$

Excited state analysis:

- Variational analysis: point-like vs. Gaussian-like quark w.f.'s in (anti)neutrons
- Data points: ratios of lattice correlators $C_{3pt}(T)/C_{2pt}(T) \rightarrow \langle N|Q|\overline{N} \rangle$
- Bands: 2-state fits of lattice data with Tsep ≈ 0.5 ... 1.5 fm
- Variance across fits \rightarrow systematic uncertainty

Nonperturbative Operator Renormalization

6-Quark Green's functions on a lattice
 quark momentum scheme for 2-loop pQCD
 [Buchoff, Wagman PRD93:016005(2015);
 Rinaldi, SS, Wagman, et al PRD99:074510 (2019)]

+ permutations to enforce **SU(2)**_f

Variation with p^2 fits ranges, pQCD 1-,2-loop matching \rightarrow systematic uncertainty

Lattice QCD Result: Enhanced N⇔N

Lattice QCD with physical-mass, chiral-symmetric quarks: **x(5-10) larger N-Nbar oscillation vs. nucleon Bag model** [E.Rinaldi, S.S., M.Wagman, et al, PRD99:074510 (2019)] [E.Rinaldi, S.S., M.Wagman, et al, PRL122:162(2018)]

	$\mathcal{O}^{\overline{MS}(2 \text{ GeV})}$	Bag "A"	LQCD Bag "A"	Bag "B"	LQCD Bag "B"
$\boxed{[(RRR)_{3}]}$	0	0	_	0	
$\boxed{[(RRR)_{1}]}$	45.4(5.6)	8.190	$\left(\begin{array}{c} 5.5 \end{array}\right)$	6.660	6.8
$[R_1(LL)_0]$	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_{1}L_{0}]$	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$[(RR)_2 L_1]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_2 L_1]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_2 L_1]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2
	$[10^{-5}{\rm GeV}^{-6}]$	$[10^{-5}\mathrm{GeV}^{-6}]$]	$[10^{-5}{\rm GeV}^{-6}]$	

comparison to MIT Bag model [S.Rao, R.Shrock, PLB116:238 (1982)]

Next steps: non-quasi-free oscillation

- full systematic UQ : finite volume, continuum limit
- "crossed" 2-neutron annihilation amplitudes $\langle vac|O^{6q}|nn \rangle$
- Nuclear medium effects

Searches for Proton Decays

- Missing piece of Grand-Unified Theories
- Limits on stability of nuclear matter

Expect x10 improvement on lifetime limit from Hyper-K and DUNE

• Better sensitivity to $p \rightarrow \overline{v}K^+$ that affects supersymmetric GUT models

Proton Decay Amplitudes and Rate

Proton Decay Matrix Elements

Is proton inherently stable? **Conjecture** [A.Martin, G.Stavenga '12] Topological stability of "Chiral Bag" proton :

Lattice calculations:

- Idirect" p → πℓ, Kℓ decay matrix elements
 prior work at mπ ≥300 MeV:[S.Aoki et al (2000)]
 [Y.Aoki et al (2006), (2013), (2017)]
 - "indirect" $p \rightarrow$ vacuum proton "decay constants" + LO-ChPT

Topological stability may strongly depend on quark mass , chiral symmetry → Realistic physical-point calculation is necessary Nucleon-to-meson amplitudes ($p \rightarrow \pi \overline{\ell}, K\overline{\ell}$, decays)

Proton→Meson Correlators in Lattice QCD

Quark lines = $(D + m)^{-1} \cdot \psi$

- Two lattice field ensembles:
 - $32^3 \times 64(a=0.14 \text{ fm})$ [32ID]
 - $24^3 \times 64(a=0.20 \text{ fm}) [24\text{ID}]$
- Chirally-symmetric (Mobius-)Domain Wall fermion action with physical light and strange quark masses
- Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR)

Proton and Meson Spectrum

Momentum and Continuum Extrapolation

• linear momentum extrapolation $Q^2 \rightarrow m_e^2$, m_μ^2 to the decay kinematics

• Continuum extrapolation $A(a^2) \sim (A_0 + A_2 a^2)$; sys.error = $|A_0 - A_{[a=0.14 \text{fm}]}|$

Comparison to Previous Work

- New results:
 - conservative sys. errors (stat+sys) precision ~ 10-20%
- No FVE study, $m\pi$ L~3.4
- physical-point results agree with prev. calculations at mπ ≥300 MeV
 [S.Aoki et al (2000)]
 [Y.Aoki et al (2006)]
 [Y.Aoki et al (2013)]

No suppression of nucleon decay due to chiral skyrmion topology

Proton Annihilation Amplitudes

Sergey Syritsyn

Summary & Conclusions

Amplitudes of quark BNV operators computed in lattice QCD with realistic, chirally-symmetric quarks

Neutron-antineutron oscillation

Amplitudes × (6 ... 8) larger than from pheno.models Continuum limit study pending NEXT: nn→vacuum amplitudes, n→ \overline{n} in nuclear medium

No topological suppression of nucleon decay found; confirm limits on GUTs Finer spacing, larger volume calculations desirable Need NLO ChPT for $p \rightarrow \pi/K$: cross-check vs. $p \rightarrow vacuum$ amplitude NEXT: $p \rightarrow \rho \rightarrow \pi\pi$, $p \rightarrow K^* \rightarrow \pi K$ amplitudes BACKUP

BACKUP

This Work: Lattice Setup

- Two ensembles: [32ID] $32^3 \times 64(a=0.14 \text{ fm})$ and [24ID] $24^3 \times 64(a=0.20 \text{ fm})$
- Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR)
- N_f = 2+1 Chirally-symmetric (Mobius-)Domain Wall fermion action with physical light and strange quark masses
- Multigrid deflation of z-Mobius operator + AMA
- "Direct" ($p \rightarrow \pi, K$ matrix elements) and "Indirect" ($p \rightarrow vacuum + ChPT$)
- Nonperturbative renormalization
- Two state-fit analysis of π, K, N spectrum and $p \rightarrow \pi, K$ matrix elements
- a² Continuum extrapolation

	24ID	32ID
	$24^3 \times 64$	$32^3 \times 64$
β	1.633	1.75
$a,{ m fm}$	0.20	0.14
a^{-1}, GeV	1.02	1.37
$m_{\pi}L$	3.4	3.3
N_{conf}	134	94
N_{samp}	4288	3008

• three kinematic (Q^2) points to interpolate matrix elements to decay kinematic $Q^2 = -(m\bar{\ell})^2$

Π	$ec{n}_{\Pi}$	\vec{n}_N	$Q^2 ({ m GeV}^2)$
			(24c) $(32c)$
π	$[1 \ 1 \ 1]$	$[0 \ 0 \ 0]$	0.010 - 0.012
	$[1 \ 1 \ 1]$	$[0 \ 1 \ 0]$	0.113 0.095
	$[0 \ 0 \ 2]$	$[0 \ 0 \ 0]$	-0.116 -0.140
K	$[0 \ 1 \ 1]$	$[0 \ 0 \ 0]$	-0.034 - 0.042
	$[0 \ 1 \ 1]$	$[0 \ 1 \ 0]$	0.058 0.056
_	$[0 \ 0 \ 1]$	$[0 \ 0 \ 0]$	0.075 0.074

Nonperturbative Mixing of $\langle \overline{n} | \mathbf{Q} | \mathbf{n} \rangle$ Operators

Nonperturbative mixing, normalized by diagonal $\langle Q_i \; Q_i \rangle$ correlators

- RI-MOM scheme: $N_f=3$ (solid) and $N_f=4$ (dotted)
- MSbar scheme: N_f=3 (dashed) and N_f=4 (dash-dotted)

Negligible mixing due to chiral symmetry of quark action

Perturbative Running of $\langle \overline{n}|\boldsymbol{Q}|\boldsymbol{n}\rangle$ Operators

Perturbative running

- RI-MOM scheme: N_f=3 (solid) and N_f=4 (dotted)
- MSbar scheme: N_f=3 (dashed) and N_f=4 (dash-dotted)

Extraction of Matrix Elements

Two-state fits with energies fixed from spectrum fits

Sergey Syritsyn

BNV Amplitudes from Lattice QCD

CIPANP 2022, Aug 31, Orlando, FL

Nonperturbative Renormalization

symmetry-allowed mixing

	$\mathcal{S} = -1$	$\mathcal{S} = +1$
$\mathcal{P} = -1$	SS, PP, AA	VV, TT
$\mathcal{P} = +1$	SP, PS, AV	VA, TQ

- symmMOM scheme : p+q+r=0, $p^2=q^2=r^2=\mu^2$ $Z_{IK}^{3q}(\mu) \operatorname{Proj}_J \left[\langle \bar{q}_1(p)\bar{q}_2(q)\bar{q}_3(r) \mathcal{O}_K^{3q} \rangle_{\mathrm{amp}} \right] = \delta_{IJ}$
- symmMOM(p)→MSbar(2 GeV) perturbative conversion at O(α³)
 [J.Gracey, JHEP09:052 (2012)]

Sergey Syritsyn