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Baryogenesis and Broken Symmetries

Why More Matter > Antimatter?

Three necessary components [A.Sakharov (1967)] :

Interactions  
out of  

equlibrium

Violations of  
C- and CP-  
symmetries

Baryon  
number-changing  

interactions

(alternatively,  
leptogenesis 
+ sphalerons)

nB � nB̄

n�
⇡ 6 · 10�10

(electric dipole moments of  
p, n, e–, nuclei, atoms)

proton decay,  
neutron oscillations

neutrinoless 
beta-decays

Baryon Number : accidental symmetry of SM, violated by sphalerons 
neutron-antineutron oscillations (ΔB=2) 
proton decay (ΔB=1) 

Missing piece of Grand-Unified Theories 

Limit on nuclear matter stability?
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ΔB=2 Number Violation : n–n̅ Oscillations 

 magnetic  
moment flip

�M � �mMedium effects dominate

In vacuum ("quasi-free" n–n̅)  B~0.5 Gauss:  

In nuclei :

�M = 2µnB� � 6 · 10�12 eV

�M ⇠ O(100MeV)

Pn!n̄(t) ⇡

2�m

�M

�2
sin2


1

2
�M t

�

⇥nn̄ = (2�m)�1

Baryon number not conserved ?⇒ (anti)neutrons are not energy eigenstates: 

(n,n̅) Hamiltonian with ΔB=2 

n→n̅   transition probability 

If t ≪ (ΔM)–1  : n→n̅ transition in 

current limit                                   δm   ≲   (108 s)–1 ≈ O(10–24) eV

interactions with 
nuclear medium 

H =

✓
n
n̄

◆† ✓
Mn + 1

2�M �m
�m Mn + 1

2�M

◆✓
n
n̄

◆



BNV Amplitudes from Lattice QCD CIPANP 2022,  Aug 31, Orlando, FL

  

Sergey Syritsyn

N–N̅ Oscillations: Experimental Status

In nuclei : 
𝜏(56Fe) ≳ 0.72⋅1032 yr   

⟹ 𝜏NN̅ ≳ 1.4⋅108 s [Soudan] 

𝜏(16O) ≳ 1.77⋅1032  yr  
⟹ 𝜏NN̅ ≳ 3.3⋅108 s  [Super-K] 

𝜏(2H) ≳ 0.54⋅1032  yr  
⟹ 𝜏NN̅ ≳ 1.96⋅108 s  [SNO]

Soudan Super Kamiokande SNO

nuclear model uncertainty  
~ 10-15% for 16O  
[E.Friedman, A.Gal (2008)]

Td = R�2nn̄
R ~ 1023 s-1 

Nuclear decays from (ΔB=2) transitions: 
suppressed by nuclear medium:

Mag.field screening  
for flight ~ (ΔM)–1 > 1s B < (2µnt)

�1 = 5 nT = 10�4B�

⌧nn̄ & 108 s

�m . 6 · 10�24 eV

"Quasi-free" reactor neutrons 
ILL Grenoble high-flux reactor 
[M.Baldo-Ceolin et al, 1994)] 

Sensitivity is limited by atmospheric neutrinos
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N–N̅: Experimental Outlook

stored ultra-cold neutrons 
τn-n̅  ≳ 2.2⋅108 s  

Shielded beam (similar to ILL):  
Expected sensitivity x102-103 ILL  
τn-n̅ ≳109-1010 s 

✦ Spallation sources:  x12 flux @ESS 
✦ Elliptic focussing mirror 
✦ Better magnetic shielding (B < 1 nT) 

[Phillips et al, arXiv:1410.1100]

Pros and Cons 

Advantages: 
•  No long, shielded beamline required: more compact and less $ 
•  Sources soon available: much less expensive 
•  Same ability to turn “on” and “off” effect w/magnetic field 
Disadvantages: 
•  Production intensities far less than cold neutron beams 

NNbar with UCN 

Box filled with UCN gas… 

            each bounce samples nbar amplitude 

          (long storage time enhances achievable limit) 

many samples/neutron longer average flight times (~1/3 sec)                
large neutron current required 

hadron tracking and calorimeter 

n amplitude sampled when UCN hits 
surface 

magnetic shielding 

outer detector and muon veto 

vacuum vessel 

Maximize Probability of oscillation ~ Nn  (Tfree)2

[A.Young, BLV'11]

Further improvements 
✦ Larger vessels  
✦ Better magnetic shielding (B < 1 nT) 
✦ Parabolic floor concentrators 
✦ Multiple coherent reflections 
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VoLUME 44, NUMBER 20 PHYSICAL REVIEW LETTERS 19 Mwv 1980

there exists a self-coupling of the scalar multiplet 4~ ~ as follows:
Z =X[~*"0""'a . '~ 'a 'a '+(L, -a)+H.c.j.

From Eqs. (2), (3), and (5), it follows that there exists a six-fermion vertex of type (see Fig. 1)
(5)

where the Greek letters a, P, . . . denote color.
This Lagrangian causes the transition n—n
which we call neutron oscillation. " The impor-
tant point, which becomes obvious looking at Fig.
1, is that the AB =2 n-n transition is caused by
the same spontaneous breaking mechanism (i.e. ,
(b,s,g& 0) that causes &I & 0. We now estimate
the strength of the rt-n transition It«t= Ak'(b, s «)/
m~ '. We see that as (hn «)—0 (i.e. , restora-
tion of parity as well as B—L symmetry), the n
n oscillation disappear. We may choose the coup-
ling A-10 ' (since it is related to the mass of the
heavy Majorana neutrino') and it becomes of in-
terest to relate the characteristic time t„-„for
the neutron oscillation to m». If we use the lim-
iting lifetime resulting from the observed nuclear
stability, "of 10"yr, this corresponds to m~~
=10 GeV and t„„-=10'sec.' We stress that in
our "minimal" model (without any additional
Higgs beyond those already introduced), the pro-
ton is stable. " This is just the reverse of the
situation with the "minimal" SU(5) model where
AB = 2 transitions are forbidden. "
Thus, baryon number nonconservation —&vith or

without 8 —L conservation becomes a very.
interesting test of unification models. It would
seem that essentially the same experimental set-
up as the one which will be used to search for
proton decay could yield information about AB= 2
nucleon transitions. " The observation of such

g.P9

~v)
P&

FIG. 1. The tree graph that induces the six-fermion
A&=2 vertex that leads to n n oscillation.

transitions without proton decay would be strong
evidence for the existence of a "partial unifica-
tion" model of the type that we are considering.
We thank Professor L. N. Chang, Professor
T. D. Lee, and Professor L. Wolfenstein for use-
ful discussions. Professor L. Mo, Professor
F. Reines, and Professor R. Wilson have also
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ment at Virginia Polytechnic Institute and State
University where this work was done. This work
was supported in part by the National Science
Foundation Grant No. Phys. 78-24888 and in part
by the City University of New York-Professional
Staff Congress-Board of Higher Education Re-
search Award No. RF-13096.
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completely inaccessible to experimental observa-
tion.
The above argument is predicated on the as-

sumption that there is only one mass scale, the
unification mass M. It is possible to change the
above result provided another mass scale be-
comes relevant. This can happen in processes
which do not conserve weak isospin. For in-
stance, a neutral lepton, /&', might acquire a
Majorana mass, m, o, via the M'„„z=1 transition
lL'- (lz')'. Such a coupling can be instrumental
in allowing for 48 =2 processes. A prototype of
such a process is given by the diagram of Fig. 1.
Note that, because of B-I conservation for 4B
=1 processes, it is necessary to have the transi-
tion lL'- (lL')' in order to mediate the hB =2 tran-
sition.
If all such neutral leptons acquire their masses

through the superheavy Higgs sector, then nz, o is
necessarily of order' nGUGF 'M ', where +GU is
the fine structure constant of the grand unifica-
tion group and GF = 10 'I„' is the Fermi con-
stant. In this case, the effective couplings for
ff(~ =2) are again of order M ', and we are

back where we started. On the other hand, if
massive leptons exist with a mass m, o such that
o.GUGF 'M '«m, o«M, then kgf f(&B =2) has an

C0

dc

U

FIG. 1. Feynman diagram contributing to the neutron-
antineutron transition. The transition is mediated by
the exchange of two superheavy vector bosons and in-
volves the mixing of a massive neutral lepton with its
charge conjugate. This mixing is represented by the
blob.

effective coupling of order M 4. This leads to a
7„„comparable to v~.
To make things more definite, we now give a

crude estimate of Sn by approximately evaluating
the contribution from the superheavy vector ex-
change diagram of Fig. 1 with use of SU(5) as the
underlying grand-unification group. This is done
by collapsing the vector lines and using the effec-
tive four-Fermi interaction

(fLGU/M )es2« ~8 ~ [u ~s 'y„dqL] [lL y"d.,]+H.c. . (4)

Here E~ is a Cabibbolike mixing factor for the lep-
ton sector. Note that, under our hypothesis of a
massive neutral lepton, ~~ cannot be "rotated
away. " We also emphasize that' && need not be
related to the Cabibbo mixing factors appearing
in the couplings of the usual lV boson to the lep-
tons. Since the effective couplings of Efl. (4) are
implicitly defined at the unification scale M and
we eventually want to take matrix elements be-
bveen neutron and antineutron states, we must
include an enhancement factor due to quantum-
chromodynamics (QCD) renormalizations occur-
ring behveen the unification scale and the neutron
mass scale p (=1 GeV). This enhancement factor

is given by'

A =[&~(P)/cfGU]

where the exponent E is 4/(11 ——',f), and where
n, (1L) is the QCD coupling at the scale p and f is
the number of quark flavors. W'e now make the
drastic approximation of collapsing the lepton
lines and inserting a factor of m, o/m„'. While
this may be a very crude procedure, we do not
expect it to change the order of magnitude of our
estimate. After making a Fierz transformation
and including all the factors, the contribution of
Fig. 1 may be written as

2

pff 4 '2 e~8ff A(e&&peg&z +Kg&Le~&&)[d~L'd~L][d&~'ug~l[d„z'u~z] (6)

The matrix element (N I
—Id'x Z.«(x) I iV) can now

I obtainbe evaluated using nonrelativistic SU(6) wave func-
tions for N and N and by applying nonrelativistic
limits to the field operators in Efl. (6). We thus

GUT + massive Majorana lepton  
[T.K.Kuo, S.T.Love, PRL45:93 (1980)]

Effective ΔB=2 interaction 
Le� =

X

i

⇥
ciO

6q
i + h.c.

⇤

BSM scale suppression 
MX  ≳ (200–300) TeV n–n̅  amplitude 

from NP QCD

�m = �⇥n̄|
Z

d4xLe� |n⇤ = �
X

i

ci
M5

X

⇥n̄|O6q
i |n⇤(2⌧nn̄)

�1 =

⇠
Z

d3x (⇢q)
3

oscillation rate

sensitive to spatial quark distribution
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ΔB=2 Operators

Light-flavor SU(2)f multiplets   
[T.Kuo, S.Love, PRL45:93 (1980);  
S.Rao, R.Shrock, PLB116:238 (1982)] 
2-loop perturbative running 
[Buchoff, Wagman, PRD93:016005(2015)]

/B

Classification of all  ΔI=1  6-quark operators

(1L,3R)

(1L,7R)

Q1 = �4 (ud)A1
R (ud)A2

R (dd)S3
R TA1A2S3

Q2 = �4 (ud)A1
L (ud)A2

R (dd)S3
R TA1A2S3

Q3 = �4 (ud)A1
L (ud)A2

L (dd)S3
R TA1A2S3

Q4 = �4

5

⇥
(uu)(dd) + 4(ud)R(ud)

⇤S1S2

RR
(dd)S3

R TS1S2S3

Q5 = (uu)S1
R (dd)S2

L (dd)S3
L TS1S2S3(3L,5R) (not SU(2)L-symmetric)

(and also Q6,7 related by Wigner-Eckart thm)

(q1q2)
.
= (qT1 Cq2)

(q1q2)
A 2

�
3color,1flavor

�

(q1q2)
S 2

�
8color,3flavor

�

Must have chiral symmetry to protect the operators from mixing
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Fundamental Theory: QCD on a Lattice

�qxq̄y . . .⇥ =
Z

D
⇣
Glue

⌘Z
D
⇣
Quarks

⌘
e�SGlue�q̄

�
/D+m

�
q ⇥

qxq̄y . . .
⇤

Lattice Field Theory 	⇔   Numerical evaluation of the Path Integral

   Grassmann  
integration

=

Z
D
⇣
Glue

⌘
e�SGlue Det

�
/D +m

� ⇥�
/D +m

��1

x,y
. . .

⇤}
Hybrid  Monte Carlo sampling  

of gluon background

Systematic effects 
discretization errors 
finite volume 
unphysical heavy pion(quark) mass 
chiral symmetry breaking 
excited states 
renormalization  / M̅S̅ matching

L

a

QCD on Euclidean 4D lattice

Uµ ⇡ eig aAµ

UP ⇡ eig a2Fµ�

(”curl”Aµ)

quark 
covariant  
derivative

}
Quark Eqns.  

of Motion

t

Lattice correlation fcn. for ⟨n̅|Qα|n⟩ matrix elements 
[M.Buchoff, C.Schroeder, J.Wasem PRD93:016005(2015)]
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Lattice Details

Physical quark masses, mπ = 140 MeV  
[T.Blum et al (RBC/UKQCD), PRD93:074505 arXiv:1411.7017] 
✦ lattice      483 x 96 = 5.53 x 10.9 fm 
✦ spacing   a = 0.1392(4) fm, 𝛿(a-6)≈ 1.7%  

chiral (Möbius Domain Wall Fermions) 
2268 (28 x 81) MC samples

M e↵
n (t) =

1

a
log

Cnn(t)

Cnn(t+ a)

9

PP

PS

0 2 4 6 8 10 12
0.50

0.55

0.60

0.65

0.70

0.75

0.80

t

M
n

FIG. 2. Combined correlated �2 fits of PP , PS two-point to Eq. (38) in the time range shown in the first row of Tab. II. The
covariance matrix is estimated with optimal shrinkage �⇤ as described in the main text. Corresponding data points show the
e↵ective masses Mn(t) = ln Gnn(t) � ln Gnn(t + 1) with their statistical uncertainties. Note that tmax in Tab. II indicates the
largest separation for Gnn considered and that the e↵ective mass is consequently shown for 0  t  tmax

� 1.

tmin
PP tmin

PS tmax Ndof E0 E1 �2/Ndof �⇤

6 4 13 12 0.578(23) 1.23(27) 0.50 0.14

6 6 13 10 0.556(22) 1.11(15) 0.42 0.15

6 5 13 11 0.560(24) 1.13(21) 0.40 0.14

5 5 13 12 0.566(20) 1.26(9) 0.40 0.13

7 5 13 13 0.554(69) 0.98(43) 0.42 0.15

Weighted Ave 0.565(24)(8) 1.21(15)(65)

TABLE II. Results of two-point function fits from di↵erent time ranges: ground- and excited-state energies, reduced �2/Ndof,
and optimal shrinkage parameters �⇤. The uncertainties in individual fits are statistical. The last line shows “fit averages”
with statistical and systematic uncertainties computed as described in Appendix B 3.

IV. ANALYSIS OF MATRIX ELEMENTS

To account for excited-state contributions, we perform two-state fits to a truncation of Eq. (34),

GJJ 0

nQ†
I n̄

(tsep, ⌧) =
q

ZJ
0 ZJ 0

0 e�E0tsepMI + e�E0⌧�E1(tsep�⌧)
A

JJ 0

I + e�E1⌧�E0(tsep�⌧)
A

J 0J
I + e�E1tsepB

JJ 0

I , (37)

where A
JJ 0

I and B
JJ 0

I are products of overlap factors and matrix elements involving only excited states, which are
discarded in our calculation. The ground-state overlap factors ZP

0 and ZS
0 required to extract matrix elements of

GJJ 0

nQ†
I n̄

can be obtained independently from fits of two-point functions GPP
nn and GPS

nn to an analogous two-state model

GJJ 0

nn(�)(t) =
q

ZJ
0 ZJ 0

0 e�E0t +
q

ZJ
1 ZJ 0

1 e�E1t, (38)

The energies E0 and E1 appear in both Eq. (37) and Eq. (38), therefore fits of GnQ†
I n̄

may be simplified by fixing

the state energies E0, E1 to values determined from fits of two-point functions GJJ 0

nn . In principle, the overlaps with
excited neutron states ZJ

1 are also determined from two-point function fits, thus the number of parameters in Eq. (37)
can be reduced by factoring A

JJ 0

I , B
JJ 0

I into excited-state matrix elements and overlap factors ZJ
0,1, of which only the

latter would depend on the neutron interpolating operators. It would be possible if the two- and three-point functions
were saturated by contributions only from the ground and the first excited states, or their contributions could be
reliably distinguished from higher-energy states omitted from Eqs. (37,38). However, as our two-point function fits in
Fig. 2 show, there are higher excited-state contributions to Gnn; in particular, there is large systematic uncertainty
on E1 in (see Tab. II).

These considerations lead us to adopt the following fit strategy: first, a combined fit of GPP
nn and GPS

nn to Eq. (38)
is used to determine the four parameters E0,1 and ZP,S

0 as summarized in Fig. 2 and Tab. II; then, a combined fit of
GPS

nQ†
I n̄

, GSP
nQ†

I n̄
, and GSS

nQ†
I n̄

to Eq. (37) is used to determine the six parameters MI , A
PS
I , A

SP
I , A

SS
I , B

PS
I = B

SP
I ,

(la
tti

ce
 u

ni
ts

)

Mn = 977(42)stat(13)sys MeVNucleon effective mass

lattice data 

Variational analysis on quark w.f.'s:  
point-like vs. Gaussian(smeared) 

fits  
sim. PP+PS with t ≈ 0.5 ... 1.5 fm

Cnn(t) ⇠ C0e
�E0t + C1e

�E1t
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n↔n̅ Amplitudes: Ground and Excited States

t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10
t = 11
t = 12
t = 13

0 2 4 6 8 10 12
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τ

G
P
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/G
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S
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G
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/Z
0S
)1

/2
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τ

(Z
0P
/Z
0S
)1

/2
G
S
S
3
pt
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P
S
2
pt

Q2

Q
1

Q
2

⟨n̅(point)|Qα|n(Gaussian)⟩ ⟨n̅(Gaussian)|Qα|n(Gaussian)⟩

Excited state analysis: 
Variational analysis: point-like vs. Gaussian-like quark w.f.'s in (anti)neutrons 
Data points: ratios of lattice correlators C3pt(T)/C2pt(T)→⟨N|Q|N̅⟩ 
Bands: 2-state fits of lattice data with Tsep ≈ 0.5 ... 1.5 fm 
Variance across fits → systematic uncertainty
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Nonperturbative Operator Renormalization
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Variation with p2 fits ranges, pQCD 1-,2-loop matching → systematic uncertainty

6-Quark Green's functions on a lattice 
quark momentum scheme for 2-loop pQCD 
[Buchoff, Wagman PRD93:016005(2015);  
 Rinaldi, SS, Wagman, et al PRD99:074510 (2019)]

p-dependence fit: 
(window                            )

+ permutations 
   to enforce SU(2)f

ZSI(p2) = Zfinal + cNP

⇤2
QCD

p2| {z }
nonpert.

+ c2(ap)
2 + c[4]

a4p[4]

(ap)2| {z }
discretization

⇤QCD ⌧ p ⌧ ⇡

a
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Lattice QCD Result: Enhanced N⇔N̅

comparison to MIT Bag model [S.Rao, R.Shrock, PLB116:238 (1982)]

Lattice QCD with physical-mass, chiral-symmetric quarks: 
x(5-10) larger N-Nbar oscillation vs. nucleon Bag model  

[E.Rinaldi, S.S., M.Wagman, et al, PRD99:074510 (2019)] 
[E.Rinaldi, S.S., M.Wagman, et al, PRL122:162(2018)]

[10�5 GeV�6] [10�5 GeV�6] [10�5 GeV�6]

OMS(2 GeV) Bag “A” LQCD
Bag “A” Bag “B” LQCD

Bag “B”

[(RRR)3] 0 0 � 0 �
[(RRR)1] 45.4(5.6) 8.190 5.5 6.660 6.8
[R1(LL)0] 44.0(4.1) 7.230 6.1 6.090 7.2
[(RR)1L0] -66.6(7.7) -9.540 7.0 -8.160 8.1
[(RR)2L1](1) -2.12(26) 1.260 -1.7 -0.666 3.2
[(RR)2L1](2) 0.531(64) -0.314 -1.7 0.167 3.2
[(RR)2L1](3) -1.06(13) 0.630 -1.7 -0.330 3.2

Next steps: non-quasi-free oscillation 
full systematic UQ : finite volume, continuum limit 
"crossed" 2-neutron annihilation amplitudes ⟨vac|O6q|nn⟩ 
Nuclear medium effects
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Searches for Proton Decays

[LBNF and DUNE CDR, R.Acciarri et al (2015)]

DUNE (40 kt)

Hyper-K

Hyper-K

10
32

10
33

10
34

Soudan Frejus Kamiokande

KamLAND

IMB

τ/B (years)

Super-K

10
35

10
31

minimal SU(5) minimal SUSY SU(5)
flipped SU(5)

SUSY SO(10)
non-SUSY SO(10) G224D

minimal SUSY SU(5)

SUSY SO(10)

6D SO(10)

non-minimal SUSY SU(5)
predictions

predictions

Expect x10 improvement on lifetime limit from Hyper-K and DUNE 
Better sensitivity to p ➞ 𝜈K̅+ that affects supersymmetric GUT models

Missing piece of Grand-Unified Theories 
Limits on stability of nuclear matter
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Proton Decay Amplitudes and Rate

Effective interaction

Decay width  p ➞ 𝛱�̅�   (𝛱 = 𝜋, K, Ƞ)

�(p ! ⇧¯̀) =
mN

32⇡

h
1�

⇣m⇧

mN

⌘2i2��
X

I

CIW
I
¯̀

��2

Le↵ =
X

I

CIOI + h.c.

OI = ✏abc(q̄aC1 P�I q
b
2)(¯̀

CP�0
I
qc3) = ¯̀C

↵ O
3q
I,↵

q1,2,3 2 {u, d, s} , P
�(0)
I

=
1± �5

2

where W¯̀=
⇥
W0 +W1 ·O(m¯̀/mN )

⇤
q2=m2

¯̀

negligible for e+ 
≈10% for µ+

n

5.1 Theoretical Perspectives on Proton Decay 113

SU(5) is the simplest grand unified group, and it turns out to be the most predictive as regards proton
lifetime and the unification of the three gauge couplings, owing to small GUT scale threshold e↵ects. The
minimal non-supersymmetric version of SU(5) [3] has already been excluded by the experimental lower limit
on p ! e+⇡0 lifetime and the mismatch of the three gauge couplings when extrapolated to high energies (see
left panel of Fig. 5-1). Yet low energy supersymmetry, which is independently motivated by the naturalness
of the Higgs boson mass, provides a simple solution to these problems of SU(5), as it increases the prediction
of the lifetime for the decay process p ! e+⇡0 due to the larger value of MX and also corrects the unification
mismatch (see right panel of Fig. 5-1) [5].

Supersymmetric grand unified theories (SUSY GUTs) [9],[10],[11]–[14] are natural extensions of the Standard
Model that preserve the attractive features of GUTs such as quantization of electric charge, and lead to the
unification of the three gauge couplings. They also explain the existence of the weak scale, which is much
smaller than the GUT scale, and provide a dark matter candidate in the lightest SUSY particle. Low energy
SUSY brings in a new twist to proton decay, however, as it predicts a new decay mode p ! ⌫K+ that would
be mediated by the colored Higgsino [15],[16], the GUT/SUSY partner of the Higgs doublets (see Fig. 5-2,
right panel). Typically, the lifetime for this mode in many models is shorter than the current experimental
lower limit.

Figure 5-2. Diagrams inducing proton decay in SUSY GUTs. p ! e
+
⇡

0 mediated by X gauge boson
(left), and p ! ⌫K

+ mediated by colored Higgsino (right).

In order to evaluate the lifetimes for the p ! ⌫K+ and p ! e+⇡0 decay modes in SUSY SU(5) [17], a
symmetry breaking sector and a consistent Yukawa coupling sector must be specified. In SU(5), one family
of quarks and leptons is organized as {10 + 5 + 1}, where 10 � {Q, uc, ec}, 5 � {dc, L}, and 1 ⇠ ⌫c. SU(5)
contains 24 gauge bosons, 12 of which are the gluons, W±, Z0 and the photon, while the remaining 12 are
the (X,Y ) bosons that transform as (3, 2, �5/6) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . These bosons have both
diquark and leptoquark couplings, which lead to baryon number violating processes. The diagram leading to
the decay p ! e+⇡0 is shown in Fig. 5-2, left panel. SU(5) breaks down to the Standard Model symmetry in
the supersymmetric limit by employing a 24H Higgs boson. Additionally, a {5H + 5H} pair of Higgs bosons
is employed, for electroweak symmetry breaking and the generation of quark and lepton masses.

The masses of the super-heavy particles of the theory can be related to low energy observables in minimal
SUSY SU(5) via the renormalization group evolution of the three gauge couplings, which depends through
the threshold correction on MT , the mass of the color triplet Higgsinos which mediate p ! ⌫K+ decay.
In general, agreement with the experimental value of ↵3(MZ) = 0.1184 ± 0.0007 demands the color triplet
mass to be lower than the GUT scale. This tends to lead to a rate of proton decay into ⌫̄K+ which is in
disagreement with observations [18].

Fundamental Physics at the Intensity Frontier
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Fundamental Physics at the Intensity Frontier

ordinary GUT supersymmetric GUT

Decay matrix elements (W0,1)I  [S.Aoki et al, PRD62:014506 (2000)]

h¯̀(q)⇧(p)|O�0
|N(k)i = v̄C`↵(q)P�0

h
W0(�q2)�

i/q

mN
W1(�q2)

i
uN (k)
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Proton Decay Matrix Elements

6

0 10 20 30 40 50

0

5

10

15

l

V
HlL
-
V 0

FIG. 5: The energy profile including the Casimir energy
(solid). The Skyrmion contribution, as shown in Fig. 3, is
indicated by the dashed line.

in the course of the unwinding, F (rbag) will become less
than ⇡/2, signifying that a mode from the Dirac sea has
been lifted out. Similarly, as the Skymion rewinds, this
same mode will dive back into the sea at some later time
t2. This criss-crossing of F (rbag) = ⇡/2 indicates that
the system has a zero-mode, as shown in the cartoon of
the Dirac sea in Fig. 2. This zero-mode has important,
subtle implications5.

A second consequence of time-dependent boundary
condition absent in Eq (24) is that the Casimir energy
depends on both F (rbag) as well as on its time derivative,
Ḟ (rbag). When manipulated into the bounce action, the
Ḟ terms becomes �̇ terms, and the coe�cient of the �̇2

term will play the role of a ‘mass’ for �. As such, it will
a↵ect the Skyrmion decay rate in a similar fashion to the
K(�) term in Eq. (20).

A. The non-static case

For time-dependent ✓(⌧) = F (rbag�(⌧)), the result of
the fermionic path integral is det(@⌧ +H(⌧)), where we
have recast the time-dependent boundary conditions as
a time-dependent Hamiltonian. In order to calculate the
determinant we have to solve for the eigenvalues. Sup-
pose

(@⌧ +H(⌧))| (⌧)i =  | (⌧)i, (25)

5
By the Atiyah-Patodi-Singer theorem [30–32], if the system at

any given instant has a zero mode solution, the full, time-

dependent system will also exhibit a zero mode solution (see

[33]).

and we define hn(⌧)| to be the eigenstates of H(⌧). We
have

hn(⌧)| @
@⌧

| (⌧)i+ En(⌧)hn(⌧)| (⌧)i =  hn(⌧)| (⌧)i

@

@⌧
hn(⌧)| (⌧)i+ En(⌧)hn(⌧)| (⌧)i� (26)

hṅ(⌧)| (⌧)i = hn(⌧)| (⌧)i

Defining cn(⌧) = hn(⌧)| (⌧)i, we obtain

ċn(⌧) + En(⌧)cn(⌧)�
X

m

hṅ(⌧)|m(⌧)icm(⌧) =  cn(⌧).

(27)
If the boundary conditions are changing slowly, the third
term on the left-hand side is small and can be treated
as a perturbation. We can rewrite the fermionic path
integral as

Z
Dc†Dc exp

h
�

Z
d⌧

�
c†n(⌧)Dnm(⌧)cm(⌧)�

c†n(⌧)Vnm(⌧)cm(⌧)
�i
, (28)

where Dnm(⌧) = (@⌧ + En(⌧)) �nm and Vnm(⌧) =
hṅ(⌧)|m(⌧)i. Treating the first term in the exponent as
the propagator and the second as a perturbation, the re-
sult is

det /D = detDnm exp
hX

connected diagrams
i

(29)

The determinant of Dnm is easily evaluated because it
is a disconnected set of one dimensional equations. The
eigenfunctions cn(⌧) are

cn(⌧) = exp

"
⌧ �

Z ⌧

�T
2

d⌧ 0En(⌧
0)

#
. (30)

To determine , we impose anti-periodic temporal
boundary conditions, cn(T/2) + cn(�T/2) = 0:

T �
Z T

2

�T
2

d⌧ 0 En(⌧
0) = 2⇡ i

⇣
m+

1

2

⌘
! (31)

 = i
2⇡(m+ 1

2 )

T
+

1

T

Z T
2

�T
2

d⌧ 0 En(⌧
0) ⌘ i!m + Ēn,

where Ēn =
1

T

Z T/2

�T/2
d⌧ En(⌧) (32)

In appendix A we provide an explicit calculation of
detDnm, determined by the product over all . The re-
sult, for time-dependent boundary conditions, is

detDnm = exp[�T Ecas] (33)

T Ecas = �1

2
T
X

n

|Ēn| = �1

2

X

n

����
Z

d⌧En(⌧)

���� .

Therefore, working to lowest order in an adiabatic ap-
proximation, we see that the functional determinant is

Conjecture [A.Martin, G.Stavenga '12] 
Topological stability of "Chiral Bag" proton : 

h a  ̄bi

Skyrmion 
(fig. [Zhang et al]) Free-Quark "Bag"

Is proton inherently stable?

Lattice calculations: 

"direct" p → 𝜋�̅�, K�̅� decay matrix elements 
prior work at m𝜋 ≳300 MeV:[S.Aoki et al (2000)]   
[Y.Aoki et al (2006), (2013), (2017)]  
"indirect" p → vacuum proton "decay constants"  
+ LO-ChPT

Nucleon-to-meson amplitudes 
( p → 𝜋�̅�, K�̅�,   decays)

Topological stability may strongly depend on 
quark mass , chiral symmetry 
⟹ Realistic physical-point calculation is necessary
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W0(Q2 = 0)[GeV2]

h⇡+|(ud)LdL|pi

�h⇡+|(ud)LdR|pi
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RBC/UKQCD’13 (Nf = 2 + 1)
RBC/UKQCD’06 (Nf = 0)
RBC/UKQCD’06 (Nf = 0) ChPT
JLQCD’99 (Nf = 0)

lattice calculations  
with mπ ≳ 330 MeV
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Proton→Meson Correlators in Lattice QCD

Quark lines = ( /D +m)�1 · �

e�
H

Q
C
D
t

ev
ol

ut
io

n

(Fit lattice data with n,m = 0,1)

|mihm||nihn|

CKON
3pt = hK(T )O(⌧)N(0)i =

=
X

m(K),n(N)

Zme�Em(T�⌧)
hm(K)|O|n(N)ie�En⌧Z⇤

n

Two lattice field ensembles:  
323×64(a=0.14 fm) [32ID] 
243×64(a=0.20 fm) [24ID] 

Chirally-symmetric (Mobius-)Domain Wall fermion action  
with physical light and strange quark masses  
Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR)
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Proton and Meson Spectrum
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Momentum and Continuum Extrapolation
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linear momentum extrapolation Q2 ➞ me2, mµ2 to the decay kinematics 
Continuum extrapolation A(a2) ~ (A0 + A2 a2) ; sys.error = |A0 –A[a=0.14fm]|

W0 W1
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Comparison to Previous Work

Text 
Text

0.00 0.05 0.10 0.15 0.20 0.25 0.30
W0(Q2 = 0)[GeV2]

h⇡+|(ud)LdL|pi

�h⇡+|(ud)LdR|pi

hK0|(us)LuL|pi

hK0|(us)LuR|pi

hK+|(us)LdL|pi

�hK+|(us)LdR|pi

hK+|(ud)LsL|pi

�hK+|(ud)LsR|pi

�hK+|(ds)LuL|pi

�hK+|(ds)LuR|pi

NEW Nf = 2 + 1 mphys
⇡

NEW Nf = 2 + 1 mphys
⇡ ChPT

RBC/UKQCD’13 (Nf = 2 + 1)
RBC/UKQCD’06 (Nf = 0)
RBC/UKQCD’06 (Nf = 0) ChPT
JLQCD’99 (Nf = 0)

New results: 
conservative sys. errors 
(stat+sys) precision ~ 10-20% 

No FVE study, m𝜋 L~3.4 

physical-point results agree with  
prev. calculations at m𝜋 ≳300 MeV 
[S.Aoki et al (2000)] 
[Y.Aoki et al (2006)] 
[Y.Aoki et al (2013)]

No suppression of nucleon decay  
due to chiral skyrmion topology

[J. Yoo, SS, et al, PRD105:074501 (2021)]
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c
L|Ni = ↵PLUN
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Summary & Conclusions

Amplitudes of quark BNV operators computed in 
lattice QCD with realistic, chirally-symmetric quarks 

Neutron-antineutron oscillation 
Amplitudes × (6 ... 8) larger than from pheno.models 
Continuum limit study pending 
NEXT: nn➞vacuum amplitudes, n➞n̅ in nuclear medium 

Proton decays p➞𝜋/K, p➞leptons 
No topological suppression of nucleon decay found; confirm limits on GUTs 
Finer spacing, larger volume calculations desirable 
Need NLO ChPT for p➞𝜋/K : cross-check vs. p➞vacuum amplitude 

NEXT: p➞𝝆➞𝜋𝜋,  p➞K*➞𝜋K amplitudes
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This Work: Lattice Setup

Two ensembles: [32ID] 323×64(a=0.14 fm) and [24ID] 243×64(a=0.20 fm) 
Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR) 
Nf = 2+1 Chirally-symmetric (Mobius-)Domain Wall fermion action  
with physical light and strange quark masses 
Multigrid deflation of z-Mobius operator + AMA 
"Direct" (p ➞ π,K matrix elements) and "Indirect" (p ➞vacuum + ChPT) 
Nonperturbative renormalization 
Two state-fit analysis of π,K,N spectrum and p ➞ π,K matrix elements 
a2 Continuum extrapolation

three kinematic (Q2) points to interpolate  
matrix elements to decay kinematic Q2 = –(m�̅�)2 

7

Table III: Initial and final momenta in the three-point functions selected for close-to-physical kinematics |q
2
| . m

2

`
using physical values mN = 0.94 GeV, m⇡ = 0.14 GeV, and mK = 0.495 GeV.

⇧ ~n⇧ ~nN Q2(GeV2)
(24c) (32c)

⇡ [1 1 1] [0 0 0] 0.010 �0.012
[1 1 1] [0 1 0] 0.113 0.095
[0 0 2] [0 0 0] �0.116 �0.140

K [0 1 1] [0 0 0] �0.034 �0.042
[0 1 1] [0 1 0] 0.058 0.056
[0 0 1] [0 0 0] 0.075 0.074

small to suppress the statistical fluctuations, and (3) the q
2 = 0 point is bracketed by a negative and a positive values

for a reliable interpolation. The selected initial and final state momentum combinations are shown in Tab. III for
both lattice ensembles. Since their physical volumes are very close, the momentum quanta 2⇡/(aL) are also very close
and thus we have identical lattice momenta for both lattices with very similar sets of q

2 values. In order to further
reduce the cost of our computation, we use the “coherent trick”, in which backward propagators for two maximally
separated samples are computed simultaneously from the sum of their respective sequential sources.

Meson and nucleon two-point functions

C
⇧⇧(~k, t) =

X

y

e
�i~p~x

hJ⇧(x) J
†

⇧
(0)i , (29)

C
NN̄
+

= Tr
h1 + �4

2
C

NN̄
i
,

C
NN̄
↵� (~k, t) =

X

y

e
�i~k~x

hN↵(x) N̄�(0)i ,
(30)

are also evaluated to compute the hadron state energies and overlaps with their respective interpolating operators ??.
Similarly to the three-point functions, only the correlators with ⌘ meson require disconnected diagrams, which are
neglected in the present work. This may potentially introduce a systematic bias because the ⌘ interpolating
operator is connected to the other operators by light quark propagators in the three-point function,
while in the two-point function the interpolating fields are connected by the strange quark propagators.
For the nucleon, we use the positive-parity projected spinor for all momenta ~k. Although with ~k 6= 0 the nucleon
does not have definite parity, our momenta are small enough for it to be a good approximation for the ground-state
nucleon.

D. Ground state matrix elements

In the large-time limit t2, t1 ! 1, the three-point correlation functions (22) are dominated by the ground-state
proton-meson amplitude. However, in our lattice calculation the time separations t2, t1 are not large enough to neglect
contributions from their excited states. The spectral decomposition of a three-point correlation function yields:

C
⇧ON̄
↵� (~p, ~q; t2, t1) =

X

m,n,s

h⌦|J⇧|⇧m(~p)i
e
�E⇧,m(t2�t1)

2E⇧,m
·

· h⇧m(~p)|O↵|N
(s)
n (~k)i

e
�EN,nt1

2EN,n
hN

(s)
n (~k)|N̄� |⌦i ,

(31)

where indices m, n denote the ground (m, n = 0) and excited meson (m > 0) and nucleon (n > 0) states. The ground

state matrix elements M
00
↵,s(q) = h⇧0(~p)|O↵|N

(s)
0

(~k)i dominate this sum for {t1, (t2 � t1)} ! 1. Lattice interpolating
fields for the meson J⇧ and the nucleon N may have arbitrary normalizations due to quark smearing, which are
reflected in their overlap factors Z⇧ and ZN ,

h⌦|J⇧|⇧0(~p)i =
p

Z⇧(~p) , (32)

hN
(s)
0

(~k)|N̄↵|⌦i = ū
(s)
↵

q
ZN (~k) , (33)

24ID 32ID
243 ⇥ 64 323 ⇥ 64

� 1.633 1.75
a, fm 0.20 0.14
a�1, GeV 1.02 1.37
m⇡L 3.4 3.3
Nconf 134 94
Nsamp 4288 3008



BNV Amplitudes from Lattice QCD CIPANP 2022,  Aug 31, Orlando, FL

  

Sergey Syritsyn

Nonperturbative Mixing of  ⟨n̅|Q|n⟩ Operators17
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FIG. 8. Magnitude of the o↵-diagonal components of the lattice mixing matrix (53) for (approximately) 4d-diagonal momentum
p2 = (5 GeV)2: (left) with quark external momenta shown in Fig. 7 and (right) averaged over their permutation (47). Only the
values |XIJ | � 10�4 are shown. The operator labels show their chiral isospin structure (see Tab. I). The solid lines delineate
operators that contain RRR, RRL, LLL, and LLR diquarks.

FIG. 9. Scale-independent renormalization factors for vector, scalar, and tensor currents. The axial current renormalization
ZA is trivially constant because its vertex is used to eliminate the quark field renormalization Zq. The close values of the vector
and axial-vector renormalization constants indicate that chiral symmetry-breaking e↵ects are negligible.

B. Perturbative running

In order to convert operator normalization from the RI-MOM scheme discussed above to MS, perturbative matching
calculations are required. To extract lattice renormalization factors independent from the momentum subtraction
point p, the lattice factors (54) are compared to the perturbative predictions for the RI-MOM scheme in some
window pmin  |p|  pmax where lattice artifacts are believed to be under control. In this section, details of relevant
perturbative results are summarized.

The one-loop anomalous dimensions of the operators (7-9) were computed in Ref. [16], and the MS anomalous
dimensions to the O(↵2

S) precision together with O(↵S) conversion factors were computed in Ref. [17]. In the chiral
basis, the perturbative renormalization of the operators is diagonal (no mixing), and their independent anomalous
dimensions are

1

ZI

d

d ln µ
ZI = ��I(↵S) = ��(0)

I

✓
↵S(µ)

4⇡

◆
� �(1)

I

✓
↵S(µ)

4⇡

◆2

, (56)

with the coe�cients �(0)
I given in Tab. I. These anomalous dimensions are substantially di↵erent, which would com-

log
hQiQji
norm.

 Nonperturbative mixing, normalized by diagonal ⟨Qi Qi⟩ correlators 
RI-MOM scheme: Nf=3 (solid) and Nf=4 (dotted) 
MSbar scheme: Nf=3 (dashed) and Nf=4 (dash-dotted)

Negligible mixing due to chiral symmetry of quark action
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Perturbative Running of  ⟨n̅|Q|n⟩ Operators

18

plicate operator renormalization if chiral symmetry was violated by a lattice fermion action and mixing was allowed.
We integrate the equations (56) together with an RG equation for the coupling constant ↵S(µ) using the 4-loop
�(↵S)-function. Since our lattice QCD action has Nf = 2 + 1 dynamical flavors, the lattice factors (54) are matched

to ZRI(µ) factors computed in Nf = 3 perturbative QCD and the coupling constant ↵
Nf=3
S is matched to its physical

value at µ  mc. The latter is obtained from a global fit [34] and matched at the mb,c quark mass thresholds. For

the reference point µ0 = 2GeV, its values9 are ↵
Nf=3
S = 0.2827 and ↵

Nf=4
S = 0.2948.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
µ [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Z

I
(µ

)/
Z

I
(µ

1
) Q1

Q2

Q3

Q4

Q5

FIG. 10. Perturbative running of the operators QI at the 2-loop level [17] in the RI-MOM scheme with Nf = 3 (solid) and
Nf = 4 (dotted) and in the MS scheme with Nf = 3 (dashed) and Nf = 4 (dash-dotted). The 1-loop results are shown with
thin solid lines. The reference point is µ1 = 1.5 GeV ⇡ mc.

The final results are converted to Nf = 4 QCD at µ0 = 2GeV, again matching at the mc threshold. The final
conversion factors from lattice to the MS scheme at scale µ0 are

C
MS(Nf=4) lat
I (µ0) =

"
Z

MS(Nf=4)
I (µ0)

Z
MS(Nf=4)
I (mc)

#

pert

"
Z

MS(Nf=3)
I (µ0)

Z
MS(Nf=3)
I (mc)

#�1

pert

C
MS RI(Nf=3)
I (µ0)Z

SI
I (µ0, a) , (57)

where ZSI
I is a “scale-independent” lattice renormalization factor with a reference point µ0 defined in the next section.

The perturbative scale dependence in both the MS and RI-MOM schemes with Nf = 3 and 4 flavors is shown in
Fig. 10.

C. Fits of nonperturbative and discretization e↵ects

With known perturbative running, we can separate scale-independent renormalization from lattice artifacts and
nonperturbative e↵ects. Correlation functions computed on a lattice are subject to discretization e↵ects that may
break rotational symmetry at short distances, which are relevant for the large momenta used in the nonpertur-
bative renormalization. In addition, they may have nonperturbative contributions that complicate matching with
perturbative calculations. Below we follow closely the analysis performed in Ref. [35] and extract the scale-invariant
renormalization constants ZSI

I from a fit

Z lat = ZSI
I

�
µ0, a

� 
ZRI
I (|p|)

ZRI
I (µ0)

�pert
+ �Zdisc

I

�
akp[k]

�
+ �ZNP

I

�
p2
�
, (58)

where ZSI(µ0, a) is the momentum-independent lattice renormalization constant, ZRI,pert
I (µ) is the perturbative

running of QI in the RI-MOM scheme and �Zdisc,NP
I encapsulates discretization and nonperturbative corrections. In

9
The coupling constant in the RI-MOM scheme is conveniently defined to be equal to the MS coupling constant.

Perturbative running  
RI-MOM scheme: Nf=3 (solid) and Nf=4 (dotted) 
MSbar scheme: Nf=3 (dashed) and Nf=4 (dash-dotted)
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Extraction of  Matrix Elements
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Figure 13: Scale-invariant diagonal renormalization (top) and o↵-diagonal mixing (bottom) factors
of 3-quark operators (left: ID24, right: ID32).
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Nonperturbative Renormalization

symmMOM scheme : p+q+r = 0,  p2=q2=r2=µ2
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Figure 9: Perturbative running and conversion functions C(p),
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13

to chiral spin structures{S, P} ! {R, L}) and thus preferred for final results; note that this
results in 12 operators, so that any 2 operators can be presented as linear combinations of
the other 10 (see below).

S = �1 S = +1
P = �1 SS, PP , AA V V , TT

P = +1 SP , PS, AV V A, TQ

Table 1: Classification of operators by parity and diquark symmetry [taken from JY’s writeup].
Switching symmetry is determined by �1: S(�1 = S, P, A) = �1 and S(�1 = V, T ) = +1, while
parity P = �P(�1)P(�2) is determined by both �1, �2: P(�1,2 = S, V, T ) = +1 and P(�1,2 =
P, A, Q) = �1.

Using Fierz identities, one can express any 3-quark operator using only 10 independent oper-
ators. For example, the negative-parity (us)d operators can be expressed using only the (ud)s-
operators as follows2:

(us)SdS =
1

4
(ud)SsS +

1

4
(ud)P sP �

1

4
(ud)AsA +

1

4
(ud)V sV �

1

4
(ud)T sT , (12)

(us)P dP =
1

4
(ud)SsS +

1

4
(ud)P sP +

1

4
(ud)AsA �

1

4
(ud)V sV �

1

4
(ud)T sT , (13)

(us)AdA = �(ud)SsS + (ud)P sP �
1

2
(ud)AsA �

1

2
(ud)V sV , (14)

(us)V dV = (ud)SsS � (ud)P sP �
1

2
(ud)AsA �

1

2
(ud)V sV , (15)

(us)T dT = �
3

2
(ud)SsS �

3

2
(ud)P sP �

1

2
(ud)T sT , (16)

and the negative-parity (ds)u operators as follows:

(ds)SuS = �
1

4
(ud)SsS �

1

4
(ud)P sP +

1

4
(ud)AsA +

1

4
(ud)V sV �

1

4
(ud)T sT , (17)

(ds)P uP = �
1

4
(ud)SsS �

1

4
(ud)P sP �

1

4
(ud)AsA �

1

4
(ud)V sV �

1

4
(ud)T sT , (18)

(ds)AuA = (ud)SsS � (ud)P sP +
1

2
(ud)AsA �

1

2
(ud)V sV , (19)

(ds)V uV = �(ud)SsS + (ud)P sP +
1

2
(ud)AsA �

1

2
(ud)V sV , (20)

(ds)T uT =
3

2
(ud)SsS +

3

2
(ud)P sP �

1

2
(ud)T sT , (21)

Analogous identities for the positive-parity operators are obtained by replacing {�1, �2} ! {�1, �5�2}

in the lhs and rhs simultaneously. The other three permutations can be obtained using the
(anti)symmetry of the �1 matrices (S, P, A)V, T . Note that the fermion anticommutation is com-
pensated by the antisymmetric color tensor, so that, for example,

(ud)SsS,P = �(du)SsS,P , (ud)T sT,Q = +(du)T sT,Q .

The basis in the rhs of Eqs. (12–21) is particularly convenient for renormalization, since the
operators with fixed quark order (ud)s are easily classifiable by parity and u $ d symmetry (see

2TODO recheck these identities!

2

symmetry-allowed mixing

chiral symmetry suppresses 
mixing of L⟺R fields & operators

scale-independent  
lat➞MSbar factors

scale-independent  
mixing factors

symmMOM(p)➞MSbar(2 GeV)  
perturbative conversion at O(α3)  
[J.Gracey, JHEP09:052 (2012)]
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