ZOMBIES: an experiment to measure nuclear anapole moments

(and more)

- Nuclear anapole moment and hadronic parity violation
- Nuclear spin-dependent parity violation (NSD-PV) in atoms & molecules: nuclear anapole moment + semi-leptonic
- ZOMBIES approach using amplified NSD-PV effect in molecules
- Proof of principle with ¹⁹F in BaF molecules
- Outlook

Dave DeMille University of Chicago & Argonne National Laboratory

Purely hadronic PV in nucleus induces nuclear spin helix = anapole moment

Purely hadronic PV in nucleus induces nuclear spin helix = anapole moment

Purely hadronic PV in nucleus induces nuclear spin helix = anapole moment

Microscopic physics of nuclear anapole moment

Nucleon-nucleon hadronic parity-violating (HPV) interactions perturb nuclear structure:

Hamiltonian for unpaired nucleon interacting with paired core gives spin-momentum correlation

$$H_{HPV} \sim G_F \left(\vec{\sigma}_N \cdot \vec{p}_N \right) \sum_i g_{\text{eff},i} F_i(\vec{r},\vec{\tau})$$

Describe low-energy HPV with 6 dimensionless coupling constants, each associated with different spin/isospin structure & range

Single prior anapole measurement from atomic PV in ¹³³Cs [C. Wieman group, JILA, 1997]

Poor agreement with all other data (nuclear theory problem...?)

Assumes ~30% uncertainty in nuclear structure calculations

New odd-p isotopes

NOTE: anapole moments not yet evaluated in new EFT parameterization & large N_c analysis of HPV

See M. Sarsour talk this session

Single prior anapole measurement from atomic PV in ¹³³Cs

Odd-n

isotopes

[C. Wieman group, JILA, 1997]

Assumes ~30% uncertainty in nuclear structure calculations

Mechanisms for nuclear spin-dependent parity violation in atoms and molecules

HPV interactions inside nucleus induce nuclear anapole moment: couples magnetically to penetrating electron

Mechanisms for NSD-PV in atoms and molecules

σ

HPV interactions inside nucleus induce nuclear anapole moment: couples magnetically to penetrating electron

Mechanisms for NSD-PV in atoms and molecules

╋

HPV interactions inside nucleus induce nuclear anapole moment: couples magnetically to penetrating electron $Z^0 \gamma$ $V_N I$

A_e

 σ_{e}

Coherent sum: weak charge Q_W and EM hyperfine interaction (small, well-understood)

 $H_{NSD-PV} \propto \left(\kappa_2' + \kappa_a' + \kappa_Q'\right) G_F \left(\vec{\sigma} \cdot \vec{I}\right) \left(\vec{\sigma} \cdot \vec{p}\right) \delta^3(\vec{r})$

3 contributions to NSD-PV in atoms/molecules: scaling with Z & A

Challenge for atomic/molecular approaches: Signals by far easiest to detect with high Z & A BUT

Best chance for reliable interpretation with lowest Z & A

3 contributions to atom/molecule NSD-PV: scaling with Z & A

$$\begin{split} H_{NSD-PV} &\propto \left(\kappa_{2}' + \kappa_{a}' + \kappa_{Q}'\right) G_{F} \left(\vec{\sigma} \cdot \vec{I}\right) \left(\vec{\sigma} \cdot \vec{p}\right) \delta^{3}(\vec{r}) \\ \kappa_{2P}' &\approx .05 g_{eff} \left(\frac{A}{50}\right)^{2/3} \\ (g_{eff,P} &\cong 4, \ g_{eff,N} \leq 1) \end{split}$$

Heavy atoms/molecules->anapole term dominates: $|\kappa'_a| > |\kappa'_2|$ (Collective enhancement causes radiative correction > tree level...!)

Light atoms/molecules \rightarrow tree-level Z exchange term dominates: $|\kappa_a'| > |\kappa_2'|$ $|\kappa_a| \approx |\kappa_2|$ for $A \approx 10$ (odd proton) $A \approx 100$ (odd neutron)

More physics motivation for κ measurements: neutral weak currents & QCD

κ_2 : Tree-level Z⁰ Exchange

- Vector electron axial nucleon weak coupling constants (C_{2N}, C_{2P})
- Related to fundamental electron-quark couplings (C_{2u} , C_{2d}) via QCD
- Complementary to PVDIS e-p measurements at JLAB (different linear combinations of C₂'s & nucleons vs. quarks)

ZOMBIES overarching goal:

understand electroweak interactions in strongly-interacting environment at low q²

Pure hadronic (nucleon-nucleon) parity violating interactions: still poorly understood

--complementary to recent few-nucleon probes (NPDGamma, polarized n on ³He, neutron spin rotation, ...)

--sensitive to different linear combinations in multi-parameter space

--connect to recent developments in nuclear structure calculations & HPV theory

--rich data set for consistency checks

-- benchmark for $0\nu\beta\beta$ matrix element calculations...???

Nucleon-level V_eA_h (C_{2P}, C_{2N}) vs. Nucleus-level V_eA_h

 -quenching as for g_A in charged currents...?

• Quark-level $V_eA_h(C_{2u}, C_{2d})$ vs. nucleon-level $V_eA_h(C_{2P}, C_{2N})$ neutral current couplings ? --matching as $q^2 \rightarrow 0...?$

--potential for lattice QCD prediction & post-hoc verification?

ZOMBIES principle: amplified NSD-PV mixing in molecules w/unpaired electron

Naturally small rotational splitting ($\sim 10^{-4}$ eV vs. ~ 1 eV in atoms)

Amplified NSD-PV mixing in molecules with one unpaired electron

Naturally small rotational splitting ($\sim 10^{-4}$ eV vs. ~ 1 eV in atoms) can be bridged w/Zeeman shift: $\gtrsim 10^{11}$ enhanced PV mixing vs. classic experiments with atoms

Stark interference method:

apply oscillating \mathcal{E} -field to mix nearly-degenerate opposite-parity levels

D.D., S.B. Cahn, *et al.* PRL **100**, 023003 (2008)

PV mixing *iW* encodes physics of interest

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

Nguyen *et al.,* PRA **56**, 3453 (1997)

|+>

$$\begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$$

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

 $\begin{bmatrix} \omega \gg \Delta, \ d\mathcal{E}_0; \\ T = 2\pi \ / \ \omega \end{bmatrix}$

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

+>

D.D., S.B. Cahn, et al. PRL **100,** 023003 (2008)

PRA 56, 3453 (1997)

Signal, Asymmetry, Sensitivity

- - Measure signal
$$S(\mathcal{E}_0) \approx 4N_0 \sin^2 \left(\frac{\Delta T}{2}\right) \left[\left(\frac{d\mathcal{E}_0}{\omega}\right)^2 + 2\frac{W}{\Delta} \frac{d\mathcal{E}_0}{\omega} \right]$$

with opposite-sign \mathcal{E} -fields $+\mathcal{E}_0, -\mathcal{E}_0$

Signal, Asymmetry, Sensitivity

- - Measure signal
$$S(\mathcal{E}_0) \approx 4N_0 \sin^2 \left(\frac{\Delta T}{2}\right) \left[\left(\frac{d\mathcal{E}_0}{\omega}\right)^2 + 2\frac{W}{\Delta} \frac{d\mathcal{E}_0}{\omega} \right]$$

with opposite-sign \mathcal{E} -fields $+\mathcal{E}_0, -\mathcal{E}_0$

- - Form asymmetry to extract W in terms of known quantities :

$$\mathcal{A} = \frac{S(+\mathcal{E}_0) - S(-\mathcal{E}_0)}{S(+\mathcal{E}_0) + S(-\mathcal{E}_0)} \approx 2\frac{W}{\Delta}\frac{\omega}{d\mathcal{E}_0}$$

Signal, Asymmetry, Sensitivity

- - Measure signal
$$S(\mathcal{E}_0) \approx 4N_0 \sin^2 \left(\frac{\Delta T}{2}\right) \left[\left(\frac{d\mathcal{E}_0}{\omega}\right)^2 + 2\frac{W}{\Delta} \frac{d\mathcal{E}_0}{\omega} \right]$$

with opposite-sign \mathcal{E} -fields $+\mathcal{E}_0, -\mathcal{E}_0$

- - Form asymmetry to extract W in terms of known quantities :

$$\mathcal{A} = \frac{S(+\mathcal{E}_{_{0}}) - S(-\mathcal{E}_{_{0}})}{S(+\mathcal{E}_{_{0}}) + S(-\mathcal{E}_{_{0}})} \approx 2\frac{W}{\Delta}\frac{\omega}{d\mathcal{E}_{_{0}}}$$

Statistical Uncertainty $\delta W = \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{N_0}} \frac{1}{T}$ best sensitivity from large interaction time T

Equivalent to measuring W as generic energy shift at Standard Quantum Limit N. Fortson, PRL **70**, 2383 (1993)

Properties of NSD-PV asymmetry: example with ¹³⁷BaF

Typical numbers for ¹³⁷BaF: $\Delta_0 \sim 1/T \sim 2\pi \times 1 \text{ kHz}$ **PV** Invariant $\omega = 2\pi \times 100 \text{ kHz}$ $dE_0/\omega = 0.1$ $\left(d\vec{\mathcal{E}} / dt\right) \cdot \left(\vec{\mathcal{B}} - \vec{\mathcal{B}}_{c}\right)$ $W = 2\pi \times 5 \text{ Hz}$ 80.0 0.06 0.04 Asymmetry 0.02 0 up to -0.02 ~8% asymmetry -0.04 expected for ¹³⁷BaF; ~1% typical -0.06 -0.08 -10 10 20 -20 0

Detuning Δ_0 (kHz)

0000

0000

(1)

Magnetic field measurement (1st layer)

FID trace + FFT fit: $\delta B/B = 0.01$ ppm in one 60 ms shot

Magnetic field control (2nd layer): results with 52 shim coils

Using molecules for final measurement & shimming: r.m.s. variation $\delta B/B < 20$ ppb [6 cm L. x 1 cm D. cylinder]

\mathcal{E} -field control

Ring electrodes create sine wave *E*-field along **z**-axis:

ZOMBIES I: NSD-PV with BaF

Initial physics goal: NSD-PV with ¹³⁷BaF

- Odd neutron (vs. ¹³³Cs w/odd proton)
- Heavy \rightarrow large effect, anapole term dominates
- Large enough natural abundance 11%
- Required lasers = simple, cheap diodes

Completed: proof of principle using ¹³⁸Ba¹⁹F

- Larger natural abundance (~75% vs ~11% for ¹³⁷Ba)
- Uses same beam source, lasers, magnet, etc. as ¹³⁷BaF
- $W(^{138}Ba) = 0$ Hz (no unpaired nucleons = no NSD-PV) $W(^{19}F) \approx 0.002$ Hz ≈ 0 (light, small electron spin density in BaF)
- Test for practical sensitivity & systematics with known answer

Typical asymmetry data from proof of principle run with ¹³⁸Ba¹⁹F

Uncertainties in proof-of-principle with ¹³⁸BaF

Strategy

- Deliberately exaggerate possible imperfections by known, large factor
- Measure effect on the NSD-PV matrix element *W* from coupling to ambient imperfections in the experiment

Parameter	Shift	Systematic	Uncertainty
		$\delta W_{\rm sys}$ (Hz)	
Bipolar \mathcal{E}_{nr} Pulses		0.12	
Unipolar \mathcal{E}_{nr} Pulses		0.16	
\mathcal{B} -Field Inhomogeneities		0.24	
$\delta \nu_{L2}$ and \mathcal{E}_{nr} at and near Gap 22	-0.04	0.21	
Total Systematic	-0.04	0.38	

Uncertainties in proof-of-principle with ¹³⁸BaF

Strategy

- Deliberately exaggerate possible imperfections by known, large factor
- Measure effect on extracted NSD-PV matrix element W from coupling to ambient imperfections in the experiment

Parameter	Shift	Systematic	Uncertainty
		$\delta W_{\rm sys}$ (Hz)	
Bipolar \mathcal{E}_{nr} Pulses		0.12	
Unipolar \mathcal{E}_{nr} Pulses		0.16	
\mathcal{B} -Field Inhomogeneities		0.24	
$\delta \nu_{L2}$ and \mathcal{E}_{nr} at and near Gap 22	-0.04	0.21	
Total Systematic	-0.04	0.38	

Final Error Budget with ¹³⁸Ba¹⁹F

Crossing	$W/(2\pi)$ (Hz)	C	d (Hz/(V/cm))	$W_{\rm mol} = \kappa' W_P / (2\pi) ~({\rm Hz})$
А	$0.28\pm0.49_{\rm stat}\pm0.38_{\rm sys}$	-0.41	3360	$-0.68 \pm 1.20_{\rm stat} \pm 0.93_{\rm sys}$
\mathbf{F}	$0.01\pm0.51_{\rm stat}\pm0.38_{\rm sys}$	+0.39	3530	$0.03 \pm 1.30_{\mathrm{stat}} \pm 0.97_{\mathrm{sys}}$
Weighted Average	-	-	-	$-0.36 \pm 0.88_{\rm stat} \pm 0.95_{\rm sys}$

~170 h data ~6x10⁷ molecules total

 $W_{mol} = 2\pi \times (-0.36 \pm 1.29)$ Hz

What does the ¹³⁸Ba¹⁹F result mean?

$$W_{mol} \equiv \left(\kappa_2' + \kappa_a'\right) W_P = 2\pi \times \left(-0.36 \pm 1.29\right) \text{ Hz}$$

Most useful comparison:

$$W_P(^{137}\text{Ba in BaF}) = 2\pi \times 160 \text{ Hz}$$

What does the ¹³⁸Ba¹⁹F result mean? $W_{mol} \equiv (\kappa'_2 + \kappa'_a) W_P = 2\pi \times (-0.36 \pm 1.29) \text{ Hz}$ Most useful comparison: $W_P (^{137}\text{ Ba in BaF}) = 2\pi \times 160 \text{ Hz}$

Same experimental uncertainty in ¹³⁷BaF would mean

 $\delta \kappa' (^{137} \text{Ba}) = 0.008 \text{ vs. } \kappa' (^{137} \text{Ba}) [\text{single particle} + \text{shell model}] \approx 0.07$

~10% of predicted value

What does the ¹³⁸Ba¹⁹F result mean? $W_{mol} \equiv (\kappa'_2 + \kappa'_a) W_P = 2\pi \times (-0.36 \pm 1.29)$ Hz Most useful comparison: $W_P (^{137}$ Ba in BaF) = $2\pi \times 160$ Hz

Same experimental uncertainty in ¹³⁷BaF would mean

 $\delta \kappa' (^{137} \text{Ba}) = 0.008 \text{ vs. } \kappa' (^{137} \text{Ba}) [\text{single particle} + \text{shell model}] \approx 0.07$

~10% of predicted value

Compares favorably to JILA ¹³³Cs result: $\kappa' (^{133}Cs) = 0.39 \pm 0.06$

What does the ¹³⁸Ba¹⁹F result mean? $W_{mol} \equiv (\kappa'_2 + \kappa'_a) W_P = 2\pi \times (-0.36 \pm 1.29) \text{ Hz}$ Most useful comparison: $W_P (^{137}\text{ Ba in BaF}) = 2\pi \times 160 \text{ Hz}$

Same experimental uncertainty in ¹³⁷BaF would mean

 $\delta \kappa' (^{137} \text{Ba}) = 0.008 \text{ vs. } \kappa' (^{137} \text{Ba}) [\text{single particle} + \text{shell model}] \approx 0.07$

~10% of predicted value

Compares favorably to JILA ¹³³Cs result: $\kappa'(^{133}Cs) = 0.39 \pm 0.06$

C.S. Wood et al., Science 275, 1759 (1997)

- Unprecedented sensitivity to NSD-PV
- General technique enables measurements in broad range of nuclei

Newly added: Cryogenic Buffer Gas-cooled Beam (CBGB)

[S. Maxwell *et al.* PRL 2005; D. Patterson & J. Doyle J Chem Phys 2007; J. Barry, DD, *et al.* PCCP 2011; N. Hutzler, DD, J. Doyle *et al.* PCCP 2011]

- Inject hot molecules (e.g. via laser ablation)
- Cool w/cryogenic buffer gas @ high density
- Efficient extraction to beam via "wind" in cell: $10^{-4} \rightarrow 10\%$ -40%
- "Self-collimated" by extraction dynamics
- \bullet Rotational cooling in expansion: T \sim 1-4 K
- Moderately slow: v ~ 200 m/s

Low velocity \rightarrow interaction time ~ 3x larger; Beam brightness ~ 2x larger flux observed SO FAR (but expected 10-100x....?) Will enable magnetic focusing $\Rightarrow ~ 10x$ flux

Gain in NSD-PV statistical sensitivity: 5x now, >30× anticipated

Demonstrated: Better Energy Resolution with CBGB

ZOMBIES: general-purpose technique, applicable to many isotopes

PRL 100, 023003 (2008)

PHYSICAL REVIEW LETTERS

week ending 18 JANUARY 2008

Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

D. DeMille,¹ S. B. Cahn,¹ D. Murphree,¹ D. A. Rahmlow,¹ and M. G. Kozlov²

Nucleus	Ι	ν	l	n.a. (%)	$100\kappa'_a$	$100\kappa_2'$	Species	B_e (MHz)	$\mathcal{B}_{0}^{(m)}\left(\mathrm{T}\right)$	W_P (Hz)	$\tilde{C}^{(m)}$	$W^{(m)}$ (Hz)
⁸⁷ Sr ₃₈	9/2	N	4	7.0	-3.6	-5.0	SrF	7515	0.62	65	-0.40	2.2
91 Zr ₄₀	5/2	Ν	2	11.2	-3.5	-5.0	ZrN	14468	1.20	99	-0.40	3.4
¹³⁷ Ba ₅₆	3/2	Ν	2	11.2	+4.2	+3.0	BaF	6480	0.32	164	-0.44	-5.2
^{1/1} Yb ₇₀	1/2	N	1	14.3	+4.1	+1.7	YbF	7246	0.33	729	-0.52	
²⁷ Al ₁₃	5/2	Р	2	100	-11.2	+5.0	AlS	8369	0.52	10	-0.42	0.3
69Ga ₃₁	3/2	Р	1	60.1	-19.6	+5.0	GaO	8217	0.49	61	-0.43	3.8
⁸¹ Br ₃₅	3/2	Р	1	49.3	-21.8	+5.0	MgBr	4944	0.34	18	-0.42	1.3
¹³⁹ La ₅₇	7/2	Р	4	99.9	+34.7	-3.9	LaO	10578	0.25	222	-0.43	-29

Improved understanding of molecular structure since 2008
 → even more viable molecule species to study many different nuclei

Viable nuclei for anapole/NSD-PV measurement with ZOMBIES

	• 10% measurement possible with demonstrated sensitivity, \lesssim 100 h data																
1	Requires systematics ~2-10x better												1	2			
H	• Statistics likely OK, will require systematics ~100x better											ſ	Η	He			
● ³ Li	$ \overset{\bullet}{\mathbf{B}} \overset{\bullet}{\mathbf{C}} \overset{\bullet}{\mathbf{N}} \overset{\bullet}{\mathbf{O}} \overset{\bullet}{\mathbf{O}} $											⁸ O	●9 F	Ne			
Na	$ \begin{array}{cccc} 12 \\ Mg \end{array} $											Old Cl	Ar				
● ⁹ K	$\overset{\scriptscriptstyle 20}{\mathrm{Ca}}$	21 Sc	Ti	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	²⁷ Co	²⁸ Ni	Cu	³⁰ Zn	Ga	32 Ge	33 As	34 Se	Br	³⁶ Kr
B7 Rb	³⁸ Sr	• ³⁹ Y	⁴⁰ Zr	$\overset{_{41}}{\mathrm{Nb}}$	⁴² Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	\mathbf{P}^{46}	$\begin{vmatrix} 47 \\ Ag \end{vmatrix}$	⁴⁸ Cd	●49 In	50 Sn	Sb	Te	●53 I	Xe
55	56	6 57		73	74	75	76	77	78	79		81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	B1	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Beyond ZOMBIES: next-gen NSD-PV measurements with light nuclei

PRL 100, 023003 (2008)PHYSICAL REVIEW LETTERSweek ending
18 JANUARY 2008

Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

D. DeMille,¹ S. B. Cahn,¹ D. Murphree,¹ D. A. Rahmlow,¹ and M. G. Kozlov²

See Ronald Garcia-Ruiz plenary talk this morning

F at lower v [31]. Alternatively, it might be possible to increase *T* using trapped molecular ions [32]. Such improvements, plus more spectral data for similar molecular species, could widen the list of accessible nuclei. For light molecules and nuclei, *ab initio* electronic and nuclear structure calculations may be possible at accuracies better than those envisioned here. Ultimately, the method might extend to direct measurement of κ' for ¹H and ²H. For

<u>Towards measurements of symmetry-violating nuclear properties using single molecular ions in a Penning trap</u> J Karthein, D DeMille, J Dilling, R Garcia Ruiz, N Hutzler, P Mohapatra, Scott Moroch, Ryan Ringle, Silviu-Marian Udrescu Bulletin of the American Physical Society 66 2021

 MUCH longer interaction time, MUCH smaller experimental volume, very advanced techniques w/single ions in Penning traps

MUCH better sensitivity (sufficient for p,d...?)
 AND
 ability to probe short-lived radioactive isotopes

First glimmers: reliable HPV→NSD-PV calculations in nuclei?

PHYSICAL REVIEW A 102, 052828 (2020)

Editors' Suggestion

Nuclear spin-dependent parity-violating effects in light polyatomic molecules

Yongliang Hao[®],¹ Petr Navrátil[®],² Eric B. Norrgard[®],³ Miroslav Iliaš[®],⁴ Ephraim Eliav,⁵ Rob G. E. Timmermans[®],¹ Victor V. Flambaum[®],⁶ and Anastasia Borschevsky[®],^{*}

III. NO-CORE SHELL-MODEL
NUCLEAR CALCULATIONS

	⁹ Be	¹³ C	¹⁴ N	¹⁵ N	²⁵ Mg
I^{π}	3/2-	1/2-	1+	1/2-	5/2+
$\mu^{ ext{exp.}}$	-1.177^{a}	0.702 ^b	0.404 ^c	-0.283^{d}	-0.855°
		NCSM	calculations		
μ	-1.05	0.44	0.37	-0.25	-0.50
κ _A	0.016	-0.028	0.036	0.088	0.035
$\langle s_{p,z} \rangle$	0.009	-0.049	-0.183	-0.148	0.06
$\langle s_{n,z} \rangle$	0.360	-0.141	-0.1815	0.004	0.30
<i>K</i> ax	0.035	-0.009	0.0002	0.015	0.024
К	0.050	-0.037	0.037	0.103	0.057

- First No-Core Shell Model calculations of anapole moments and V_eA_N effects
- Significant differences from single-particle SM estimates
 - Magnetic moment as benchmark

present calculations, we can be optimistic that uncertainties of nuclear calculations for light nuclei can be reduced to $\sim 10\%$ once the above improvements are implemented. The NCSM

ZOMBIES Past & Present

Emine Altuntas

Jeffrey Ammon

David Rahmlow, Dennis Murphree

Dr. Yulia Gurevich

Dr. Emil Kirilov

Dr. Max Beyer

Sidney Cahn

Sidney Cahn

(Yale)

Dr. Mangesh Bhattarai

Tanvi Deshmukh

ZOMBIES: Summary & Outlook

--**New era in NSD-PV:** anapole + V_eA_N measurements beginning

--Sensitivity & accuracy of molecular systems likely to

enable measurements on many nuclei, including lighter isotopes, with <10% uncertainty

--Complementary to other hadronic PV experiments & SoLID/PVDIS @ JLab

--NSD-PV poised to open new window to unified understanding of hadronic PV & semileptonic neutral-current PV, in strongly-interacting environment, across wide range of scales

Extra Slides

ZOMBIES Re-assembly Underway at Argonne!

Different level crossings to suppress systematics

Ongoing or proposed anapole-sensitive experiments with atoms

- Mainz: ¹⁷¹Yb, ¹⁷³Yb atoms (similar to JILA Cs experiment)
- FrPNC @ TRIUMF: ***Fr atoms (laser cooled & trapped)
- Mainz: new ideas using NMR signals for light nuclei....?
- Mainz + ANL: use CeNTREX apparatus in different mode (AC \mathcal{E} -field)...?

Mechanisms for atomic/molecular parity violation

Axial electron-vector nucleon interaction

Coherent coupling to all nuclei = "weak charge" $Q_W = -N + (1-4\sin^2\theta_W)Z$ A_eV_N interaction \rightarrow atomic Hamiltonian

$$H \propto Q_W G_F \left(\vec{\sigma} \cdot \vec{p} \right) \delta^3(\vec{r})$$

axial vector associated with electron

short-range Yukawa potential

Q_W measured to 0.4% [C. Wieman group, 1997]

& interpreted at 0.3% level [A. Derevianko 2010, V. Flambaum 2012, ...]

 \Rightarrow Running of sin² θ_w & Limits on Z' bosons

Mechanisms for atomic/molecular parity violation

Vector electron-axial nucleon interaction

 $V_{\rm e}A_{\rm N}$ interaction \rightarrow Hamiltonian:

$$H \propto C_2 G_F \left(\vec{\sigma} \cdot \vec{I} \right) \left(\vec{\sigma} \cdot \vec{p} \right) \delta^3(\vec{r})$$

Nuclear spin *I* = axial vector associated with nucleon

Coupling ONLY to unpaired nucleon coupling constant C₂ C_2 numerically small: $V_e/A_e = (1-4\sin^2\theta_W) \sim .08$

<u>Bottom line</u>: $V_e A_N / A_e V_N \sim 10^{-3}$ (for heavy atoms)

Anapole moments in DDH parameterization

Nuclear anapole moments

W. C. HAXTON, C.-P. LIU, AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW C 65 045502

TABLE VII. PNC observables and corresponding theoretical predictions, decomposed into the designated weak-coupling combinations.

Observable	Expt. $(\times 10^7)$	$f_{\pi} = 0.12 h_{\rho}^1 = 0.18 h_{\omega}^1$	$h_{\rho}^{0} + 0.7 h_{\omega}^{0}$	$h_{ ho}^1$	h_{ρ}^2	h^0_{ω}	h^1_{ω}
$A_L^{pp}(13.6)$	-0.93 ± 0.21		0.043	0.043	0.017	0.009	0.039
$A_{L}^{\bar{p}p}(45)$	-1.57 ± 0.23		0.079	0.079	0.032	0.018	0.073
$A_L^{pp}(221)$	0.84 ± 0.34		-0.030	-0.030	-0.012	0.021	
$A_L^{p\alpha}(46)$	-3.34 ± 0.93	-0.340	0.140	0.006		-0.039	-0.002
$P_{\gamma}(^{18}\text{F})$	1200 ± 3860	4385		34			-44
$A_{\gamma}(^{19}\mathrm{F})$	-740 ± 190	-94.2	34.1	-1.1		-4.5	-0.1
$\langle A_1 \rangle / e$, Cs	800 ± 140	60.7	-15.8	3.4	0.4	1.0	6.1
$\langle A_1 \rangle / e, T1$	370 ± 390	-18.0	3.8	-1.8	-0.3	0.1	-2.0

3 contributions to NSD-PV: scaling with Z & A

$$H_{NSD-PV} \propto \left(\kappa_{2}' + \kappa_{a}' + \kappa_{Q}'\right) G_{F} \left(\vec{\sigma} \cdot \vec{I}\right) \left(\vec{\sigma} \cdot \vec{p}\right) \delta^{3}(\vec{r})$$

$$\kappa_{2P}'^{2P} = -\kappa_{2N}'^{2N}$$

$$\equiv -g_{A} (1-4\sin^{2}\theta_{W})/2 \cong -.05$$

$$\cdot \sim \text{independent of } A$$

$$\cdot \mathcal{O}(20\%) \text{ corrections} \text{ from SU}(3)_{f}$$

$$\cdot \mathcal{O}(100\%) \text{ expt.} \text{ uncertainty}$$

$$\cdot \text{ Quenching in} \text{ larger nuclei like } g_{A}?$$

$$\kappa_{a}'^{2} \approx \frac{9}{10} \frac{\alpha\mu}{mr_{0}} A^{2/3} g_{eff} \approx .05 g_{eff} \left(\frac{A}{50}\right)^{2/3}$$

$$g_{eff,p} \approx 4-6; g_{eff,a} \approx 0.1-1;$$

NSD-PV data with ¹³⁸Ba¹⁹F

• Measure, cancel, & remeasure *B*-field gradients and non-reversing *E*-fields to suppress possible systematics

• stray *E*-fields always below 15mV/cm

NSD-PV data with ¹³⁸Ba¹⁹F

NSD-PV data with ¹³⁸Ba¹⁹F: 2^{nd} crossing $W \rightarrow W$

z (cm)

• No systematics $\rightarrow a_1$ terms consistent with zero

Recent PV data with ¹³⁸Ba¹⁹F

Proof of concept run (null signal expected for ¹⁹F nucleus)

Statistical uncertainty δW = 0.5 Hz [~30 hours data]

- \sim 60× more sensitive than best atomic experiment (Wieman, ¹³³Cs)
 - Sufficient to measure effect in many heavy nuclei
 - & several light nuclei w/anticipated technical upgrades

Questions/requests for theorists

--Calculations with new HPV parameterization

--Calculate lightest nuclei (accessible via no-core shell model...?)

--Quantitative uncertainties on calculations!

--Could C₂ values be extracted reliably from light nuclei with existing HPV data & understanding?

--Is consistency check between isotopes in heavier nuclei useful? --special cases of particular interest? (e.g. ¹⁹F... can it be calculated accurately?)

--Can anapole measurements (with known inputs) shed light on other related calculations e.g. Schiff moment, $0\nu\beta\beta$ decay, ...?

--Generally: modern theory perspective on anapole moments URGENTLY needed (>10 years since last nuclear theory paper)