

Dark Sector at the High Intensity Frontier: Theory Overview

Dr. Yu-Dai Tsai, University California, Irvine

Contact: yudait1@uci.edu ; yt444@cornell.edu

arXiv: https://arxiv.org/a/tsai_y_1.html

The relevant literatures are growing fast. Let me know if I have not included your important works. I will include them to the slides

Contact: yudait1@uci.edu ; yt444@cornell.edu

Outline

- Why study "dark sector"?
 Why MeV to GeV+ region?
 Why accelerator (intensity) probes?
- Intro to dark sector "portals" and anomaly Motivated Models
- Search Overview & Specific Examples

The Rise of Dark Sector

- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freezeout through weak-Interaction (e.g. through Z-boson) would overclose the Universe.
- Could consider ways to get around this but generally light DM needs light **mediators** to freeze-out to proper relic abundance.
- Mediator is needed for a proper freeze-out: the rise of "dark sector" (DM + mediators + stuffs).
- Neutrino experiments can probe both mediators & dark matter

"Portal" Particles

- Renormalizable interactions.
- High-Dim. axion portal is also popular

$$\mathcal{L} \supset \begin{cases} -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'^{\mu\nu}, & \text{vector portal} \\ (\mu\phi + \lambda\phi^2) H^{\dagger}H, & \text{Higgs portal} \\ y_n LHN, & \text{neutrino portal} \end{cases}$$

Exploration of Dark Matter & Dark Sector

- Astrophysical/cosmological observations are important to reveal the actual story of dark matter (DM).
- Why accelerator experiments? And why MeV GeV+?

Energy vs Intensity Frontier

High energy frontier

Intensity frontier

https://indico.fnal.gov/event/18430/session/8/contribution/17 redesigned from Roni Harnik's slide

Not all bounds are created with equal assumptions

Assumptions

Or, how likely is it that theorists would be able to argue our ways around them

Accelerator-based: Collider, Intensity Experiments Some other ground-based experiments

Astrophysical productions (not from ambient DM): energy loss/cooling, etc: Rely on modeling/observations of (extreme/complicated/rare) systems (SN1987A & neutron-star mergers);

Dark matter direct/indirect detection: abundance, velocity distribution, etc

Cosmology: assume cosmological history, species, etc

DD & Cosmology: They reveal the actual story of dark matter and cosmic evolution

Not all bounds are created with equal assumptions Example: Constraints on Millicharged Dark Matter

Also consider ambient dark matter

Produce dark particles in collisions

Same mass and interaction strength.

Different assumptions

Some details of these figures will be explained later

Why study MeV – GeV+ dark sectors?

Signals of discoveries grow from anomalies Maybe nature is telling us something so we don't have to search in the dark? (or probably systematics?)

Some anomalies involving MeV - GeV+ Explanations

- Muon g-2 anomaly
- LSND & MiniBooNE anomaly
- EDGES result
- KOTO anomaly
- Beryllium anomaly

Below ~ MeV there are also **strong astrophysical/cosmological bounds** that are hard to avoid even with very relaxed assumptions

Overview of benchmark models

Benchmark Models for Dark-Sector Searches

Snowmass RF06 Classification

Benchmarks in Final State x Portal Organization

	DM Production	Mediator Decay Via Portal	Structure of Dark Sector
Vector	$\begin{array}{l} m_{\chi} vs. \ y \ [m_{A}/m_{\chi}=3, \alpha_{D}=.5] \\ \textbf{m}_{A}, \textbf{vs. } \textbf{y} \ [\alpha_{D}=0.5, 3 \ m_{\chi} \text{ values}] \\ \underline{m}_{\chi} vs. \alpha_{D} \ [m_{A}/m_{\chi}=3, y=y_{fo}] \\ m_{\chi} vs. \ m_{A} \ [\alpha_{D}=0.5, \ y=y_{fo}] \\ \textbf{Millicharge } m \ vs. \ \textbf{q} \end{array}$	m _A , vs. ε [decay-mode agnostic] m _A , vs. ε [decays]	iDM m _{χ} vs. y [m _A /m _{χ} =3, a_{D} =.5] (anom connection) SIMP-motivated cascades [slices TBD] U(1) _{B-L/µ-τ/B-3τ} (DM or SM decays)
Scalar	m _{χ} vs. sin θ [λ =0, fix m _s /m _{χ} g _D] (thermal target excluded 1512.04119, should still include) Note secluded DM relevance of S \rightarrow SM of mediator searches	m _s vs. sinθ [λ=0] m _s vs. sinθ [λ=s.t. Br(H→ss ~10 ⁻²)]?	Dark Higgssstrahlung (w/vector) scalar SIMP models Leptophilic/leptophobic dark Higgs
Veutrino	e/μ/τ a la1709.07001	$m_{_{\rm N}}$ vs. $U_{_{\rm e}}$ $m_{_{\rm N}}$ vs. $U_{_{\mu}}$ $m_{_{\rm N}}$ vs. $U_{_{\tau}}$ Think more about reasonable flavor structures	Sterile neutrinos with new forces
ALP 1	m_{χ} vs. fq/l [λ =0, fix m_a/m_{χ} , g_D] (thermal target excluded) What about f_{γ} , f_G ?	$m_{a} vs. f_{q}$ $m_{a} vs. f_{G}$ $m_{a} vs. f_{q} = f_{1}$ $m_{a} vs. f_{w}$	FV axion couplings

Bold = BRN benchmark, italic=PBC benchmark. others are new suggestions. Underline=CV benchmarks that were not used in BRN

PBC: The Physics Beyond Colliders initiative at CERN

Krnjaic, ... Tsai, <u>arXiv:2207.00597</u>

Examples: Portal Particles & Interesting Physics Cases

Vector Portal
$$\mathcal{L} \supset \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}.$$

• Massless dark photon can lead to millicharged particles

Neutrino Portal $\mathcal{L} \supset -y^{\alpha}L_{\alpha}HN + h.c.,$

Other neutrino coupling to new particles interesting for anomalies

Higgs Portal
$$\mathcal{L} \supset -(AS + \lambda S^2)H^{\dagger}H,$$

ALP Portal

$$\mathcal{L}_{\mathrm{ALP}} \supset \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i g_{aee} a \bar{e} \gamma^5 e + i a \bar{\psi}_N \gamma^5 (g_{ann}^{(0)} + g_{ann}^{(1)}) \psi_N,$$

Vector Portal

Vector Portal: Dark Photon

Inelastic Dark Matter & Muon g-2 explainer

(a) iDM: $\Delta = 0.4$, $\alpha_D = 0.1$. With muon g - 2 and DM regimes. $m_{A'}/m_{\chi 1} = 3$, with preliminary DUNE results

See also Mohlabeng PRD 20, arXiv:1902.05075

 χ_1

17

Millicharged Dark Sector

Motivations of Millicharged Particle & Dark Matter

- Is electric charge quantized and why? A long-standing question!
- SM U(1) allows arbitrarily small (any real number) charges. Why don't we see them? Motivates
 Dirac quantization, Grand Unified Theory (GUT), to explain such quantization (anomaly cancellations fix some SM U(1)_Y charge assignments)
- MCP (not confined) is predicted by some Superstring theories: Wen, Witten, Nucl. Phys. B 261 (1985) 651-677 <u>https://www.youtube.com/watch?v=AmUI2qf9uyo</u> (watch 15:50 to 17:28)
- Link to string compactification and quantum gravity (Shiu, Soler, Ye, PRL '13)

Kinetic Mixing and Millicharge Phase

- New fermion χ charged under new gauge boson B'.
- Millicharged particle (MCP) can be a low-energy consequence of massless dark photon (a new U(1) gauge boson) coupled to a new fermion (become MCP in a convenient basis.)

Millicharge Particles & Dark Matter

• Simply a search for particles with {mass, electric charge} = { $m_{\chi}, \epsilon e$ }

 $\epsilon = Q_x/e$

 Cooling of gas temperature to explain the EDGES anomaly [EDGES collab., Nature, (2018); Barkana, Nature, (2018)].
 A small fraction of the DM as MCP can potentially explain EDGES observation of anomalous absorption of 21 cm spectrum

Dark Sector with other EM Form Factors

Neutrino Portal

Heavy Neutral Lepton

 $\mathcal{L} \supset -y^{\alpha}L_{\alpha}HN + \text{h.c.},$

where y^{α} is a Yukawa coupling with $\alpha = e, \mu, \tau$.

- After EW symmetry breaking, the HNLs mix with the SM neutrinos
- Follow the convention of considering a single HNL that dominantly mixes with a specific neutrino flavor, i.e., dominant electron-, muon-, or tau- flavor mixing.
- Phenomenology characterized by the HNL mass, m_N , and mixing angle: $|U_{eN}|^2$, $|U_{\mu N}|^2$, $|U_{\tau N}|^2$

See, e.g., Snowmass Whitepaper, Batell et al, arXIv:2207.06905

Heavy Neutral Lepton

Dipole Portal Heavy Neutral Lepton

Magill, Plestid, Pospelov, **Tsai**, PRD 18, <u>arXiv:1803.03262</u>

$$\mathcal{L} \supset \bar{N}(i\partial \!\!\!/ - m_N)N + (d\bar{\nu}_L \sigma_{\mu\nu} F^{\mu\nu} N + h.c).$$

Higgs & ALP Portal

Higgs Portal

Summary & Outlook

- Intensity searches provide strong probes of rich dark sector motivated by dark matter and experimental anomalies
- One of the **main efforts for our community** in the next 5 to 10 years.
- Explore other models with other theory motivations & beyond the simplified models: connecting to string theory, grand unification theory, early universe cosmology, etc.
- Models with also signatures in cosmological measurements, direct detection, and astrophysical observations, are prime targets for the future

Thank you! Special thanks to my collaborators and the organizers of CIPANP