

Future dark sector searches at the LHC

Matthew Citron

Supported by funding from DOE Office of Science

Brief overview of dark sectors

Standard model

We are here

- Dark matter is part of a
 "hidden" universe with no
 SM gauge interactions
- Hidden universe can have complex structure and provide solutions to mysteries beyond DM

Hidden sector

DM is here

Connecting two worlds

- Hidden sector separated by heavy mediator and/or small couplings
- Intense high energy collisions at the LHC could overcome the barrier and produce hidden sector particles!

Hidden valley

energy

Signatures of the dark sector: decaying long-lived particles

4

- Dark sector particles could decay back to standard model "suppressed" by heavy mediator/small couplings → metastable particles at the LHC
- Stable dark sector particles could **directly interact** with detector material

Hidden valley Hidden sector LHC SM metastable particles M. Strassler $\Gamma \propto \frac{g}{2}$ $m_{\rm LLP}$

energy

Signatures of the dark sector: stable long-lived particles

- Dark sector particles could decay back to standard model "suppressed" by heavy mediator/small couplings → metastable particles at the LHC
- Stable dark sector particles could **directly interact** with detector material

e.g. DM-electron scattering

CMS/ATLAS/LHCb dark sector searches

6

- See other talks at CIPANP from <u>ATLAS</u> and <u>CMS</u> for more details on recent results!
- New triggers for Run 3 of the LHC and detector upgrades for the HL-LHC will greatly expand sensitivity (see backup)!

What about signatures that CMS/ATLAS can't see?

Soft signatures in particular face huge backgrounds, are very difficult to trigger and require highly nonstandard reconstruction

Did you see that?

Solution: dedicated detectors!

- **Backgrounds mitigated** by rock or dedicated shielding (or removing detector for readout)
- **Triggering simple** (or don't need trigger)
- Reconstruction **designed** for targeted LLP signature(s)
 - Optimal detector design and position depend strongly on targeted signature: need range of different detectors!

M. Citron mcitron@ucsb.edu

+ Moedal/MAPP

FASER detector

FASER detector

M. Citron mcitron@ucsb.edu

Adapted from C. Gwilliam

FASER status

- Detector installed in March 2021
- Commissioning with mix of cosmics, test beam and LHC collisions

FASER dark sector sensitivity

M. Citron mcitron@ucsb.edu

1811.12522

FASERv detector

- Emulsion detector designed for neutrino physics is sensitive to DM scattering from electrons/nucleons
- Capable of efficient reconstruction of low p_T tracks with ~mrad resolution
- Backgrounds from neutrinos rejected using kinematic cuts (mediated by heavy electroweak bosons)

FASERv status

Simulated ve event

Neutrino candidate events

- Successful 2018 run with pilot detector observed neutrino candidates
- Full detector taking data since July 2022
- Need to remove emulsion plates for readout every 30-50 fb⁻¹ for manageable pileup

Scattering Neutrino Detector (SND)

Vertex detector and calorimeter (emulsion/tungsten and SciFi)

- Off-axis (7.2 < η < 8.6) hybrid emulsion/electronic detector
- Match candidates from electronic detector to emulsion detector for full event reconstruction
- Commissioning detector with beam muons/neutrino candidate interactions

Leptophobic DM benchmark

JHEP03(2022)006

milliQan search for millicharged particles

- Use long scintillator bar array to detect (very) small ionisation from low charged particles
- Expected signal: few scintillation photons in multiple layers
- Each bar + PMT must be capable of detecting a single scintillation photon
- Require hits in multiple layers for stringent background rejection
- Modular design is easy to scale and adapt!

M. Citron mcitron@ucsb.edu

The milliQan demonstrator

Entries / 10

Installed on mount designed to hold full detector in CMS cavern: 33m from IP (17m of rock shielding)

- **First search** for millicharged particles at a hadron collider with new sensitivity
- Quantitative understanding of backgrounds and detector performance
 - → Use this to guide future detectors!

- Demonstrator ran very successfully, collecting ~35/fb, 2000h of data in 2018
- Used for range of studies to prove feasibility of full detector: alignment, calibrations, background measurements

Run 3 milliQan experiment

Run 3 milliQan detector status

- Run 3 detectors being installed and commissioned using cosmics, radioactive sources and beam muons
- Experience from demonstrator allowing rapid progress

What could come next?

- The HL-LHC will provide over 3000 fb⁻¹ of p-p collisions
- Many proposals for dedicated detectors (see summary)!
- Focus on FPF: dedicated forward physics facility provides extensive probe of wide range of BSM (and SM) signatures to fully exploit physics potential of the LHC!
- Facility allows longer, wider and new detectors for optimal sensitivity!

Detailed <u>white paper</u> with > 200 authors released in March 2022

Forward Physics Facility

- Purpose built cavern ~600m in front of ATLAS IP
- Tight schedule to install in time for end of Run 4 (facility cost ~40 MCHF)
- Five detectors provide comprehensive coverage of BSM and SM physics

23

FPF detectors: AdvSND, FASER 2, FASERv2

- Similar designs to Run 3 detectors with main difference being scale: up to ~10 times larger in each dimension!
- Sensitivity to DM scattering and decaying LLPs
- Proponents exploring possible upgrades to designs

FPF detectors: FORMOSA

- <u>FORMOSA</u>: forward detector sees up to factor ~ 250 higher mcp rate compared to central location
- Challenging location → prove feasibility with FORMOSA demonstrator in Run 3!
- Provide critical insights into backgrounds/operation in forward environment <u>2203.05090</u>

FPF detectors: FLArE

- Measure showers from neutrinos/DM scattering with ~16 ton LArTPC (and exploring alternative Krypton option)
- Big advantage compared to emulsion for DM scattering: real-time readout!

Brookhaven

EM shower in LAr

BSM sensitivity at the FPF

Dark photon mediated DM scattering

M. Citron mcitron@ucsb.edu

NB: this is only a small subset!

- The LHC may be a dark sector factory but many dark sector signatures invisible to ATLAS/CMS/ LHCb
- Need eco-system of dedicated experiments to fully exploit the physics potential of the LHC
- New detectors **taking Run 3 data now** and proposed detectors for the HL-LHC will provide excellent prospect for discovery!

Qualitative summary of proposed

No evidence for WIMP DM (so far...)

Direct detection experiments look for DM scattering

And no SUSY at the LHC

ATLAS SUSY Searches* - 95% CL Lower Limits June 2021									ATLAS Preliminary $\sqrt{s} = 13$ TeV
	Model	S	Signatur	r e ∫	<i>L dt</i> [fb ⁻	Mass limit			Reference
S	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	$ \vec{q} $ [1x, 8x Degen.] $ \vec{q} $ [8x Degen.]	1.0 1	.85 m($\tilde{\chi}_1^0$)<400 GeV m(\tilde{q})-m($\tilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q}\tilde{\chi}^0_1$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ğ ğ Forbic	den 1.15-	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1.95 $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e,µ	2-6 jets		139	ĝ		2.2 m($\tilde{\chi}_1^0$)<600 GeV	2101.01629
ive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	ее, µµ	2 jets 7 11 ioto	E _T miss	36.1	- 18 	1.2	$m(\tilde{g}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	1805.11381
cius	$gg, g \rightarrow qqWZ\chi_1$	SS e,μ	6 jets	L_T	139	20 PB	1.15	$m(x_1) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	1909.08457
5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	1991 A91	1.25	2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	$ \tilde{b}_1 \\ \tilde{b}_1 \\ 0.68 $	1.255	${ m m}({ ilde \chi}_1^0){<}400~{ m GeV}$ 10 GeV ${<}\Delta{ m m}({ ilde b}_1,{ ilde k}_1^0){<}20~{ m GeV}$	2101.12527 2101.12527
tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	0 e,μ 2 τ	6 <i>b</i> 2 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	b1 Forbidden 0.13-0.85	0.23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}^{0}_{2},\tilde{\chi}^{0}_{1}){=}130~{\rm GeV},~m(\tilde{\chi}^{0}_{1}){=}100~{\rm GeV} \\ \Delta m(\tilde{\chi}^{0}_{2},\tilde{\chi}^{0}_{1}){=}130~{\rm GeV},~m(\tilde{\chi}^{0}_{1}){=}0~{\rm GeV} \end{array}$	1908.03122 ATLAS-CONF-2020-031
duc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1	1.25	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e,µ	3 jets/1 b	E_T^{miss}	139	f1 Forbidden 0.65		$m(\tilde{\chi}_1^0) = 500 \text{ GeV}$	2012.03799
rect	$l_1 l_1, l_1 \rightarrow \tau_1 b v, \tau_1 \rightarrow \tau_G$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{Y}_1^0 / \tilde{c} \tilde{c}_1 \tilde{c}_2 \tilde{c}_2 \tilde{Y}_1^0$	1-2 τ 0 e.u	2 jets/1 b	E_T^{miss}	36.1	č 0.85	1.4	$m(\tau_1)=800 \text{ GeV}$ $m(\tilde{\chi}_1^0)=0 \text{ GeV}$	AI LAS-CONF-2021-008 1805.01649
ġ,		0 <i>e</i> , <i>µ</i>	mono-jet	E_T^{miss}	139	<i>t</i> ₁ 0.55		$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 e, µ	1-4 b	E_T^{miss}	139	ĩ ₁ 0.	067-1.18	$m(\tilde{\chi}_2^0)=500 \text{ GeV}$	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,µ	1 <i>b</i>	E_T^{miss}	139	<i>ĩ</i> ₂ Forbidden 0.86		$m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	2006.05880
	${\tilde \chi}_1^\pm {\tilde \chi}_2^0$ via WZ	Multiple ℓ/jet ee, μμ	ts ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0. $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.205 $	96	$\begin{array}{c} m(\tilde{\chi}_1^0){=}0, \text{ wino-bino} \\ m(\tilde{\chi}_1^\pm){-}m(\tilde{\chi}_1^0){=}5 \text{ GeV}, \text{ wino-bino} \end{array}$	2106.01676, ATLAS-CONF-2021-022 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		E_T^{miss}	139	<i>x</i> [±] ₁ 0.42		$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh	Multiple <i>l</i> /jet	ts	E _T miss	139	$\hat{\chi}_1^r / \hat{\chi}_2^o$ Forbidden	1.06	$m(\tilde{\chi}_1^0)=70 \text{ GeV}, \text{ wino-bino}$	2004.10894, ATLAS-CONF-2021-022
ect	$\chi_1 \chi_1 \text{ Via } \ell_L / \nu$ $\tilde{\tau} \tilde{\tau} \rightarrow \tau \tilde{V}^0$.	2 e,μ 2 τ		E_T E_T^{miss}	139	^λ ₁ τ̃[τ̃ι, τ̃RI] 0.16-0.3 0.12-0.39	1.0	$m(\ell, \nu)=0.5(m(\ell_1)+m(\ell_1))$ $m(\tilde{\ell}_1^0)=0$	1911.06660
<u><u> </u></u>	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,µ	0 jets	E_T^{miss}	139	<i>ℓ</i> 0.7		$m(\tilde{x}_1^0)=0$	1908.08215
		ee, μμ	≥ 1 jet	E_T^{miss}	139	<i>ℓ</i> 0.256		$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$HH, H \rightarrow hG/ZG$	0 е, µ 4 е. µ	≥ 3 b 0 iets	E_T^{miss} E_T^{miss}	36.1 139	H 0.13-0.23 0.29-0.88 0.55		$BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$	1806.04030 2103.11684
		0 <i>e</i> , <i>µ</i>	≥ 2 large je	ts E_T^{miss}	139	<i>H</i> 0.45-0.9	3	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	ATLAS-CONF-2021-022
-	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	c 1 jet	E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$ 0.66	_	Pure Wino	ATLAS-CONF-2021-015
es						$\tilde{\chi}_{1}^{\pm}$ 0.21		Pure higgsino	ATLAS-CONF-2021-015
tick	Stable g R-hadron		Multiple		36.1	<i>§</i>		2.0	1902.01636,1808.04095
par	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1^{\gamma}$	Displ. lep	Multiple	Emiss	36.1	g [r(g) = 10 ns, 0.2 ns] \tilde{e}, \tilde{u} 0.7		2.05 2.4 $m(\chi_1^*)=100 \text{ GeV}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$	2011 07812
		2.001.000		z_T	100	τ 0.34		$\tau(\tilde{\ell}) = 0.1 \text{ m}S$	2011.07812
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z_{\ell} \rightarrow \ell\ell\ell$	3 e,µ			139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Ze)=1] 0.625	1.05	Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e,µ	0 jets	E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.	1.55	$m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$		4-5 large je	ts	36.1	\tilde{g} [m($\tilde{\chi}_1^0$)=200 GeV, 1100 GeV]	1.3	1.9 Large λ_{112}''	1804.03568
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	I [I] 0.55	1.05	$m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003
ŕ	$tt, t \rightarrow b\chi_1, \chi_1 \rightarrow bbs$ $\tilde{t}_1 \tilde{t}_1 \rightarrow bs$		≥ 40 2 jets + 2 /	Ь	36.7	<i>t</i> Forbladen 0.	C	m(X ₁)=500 GeV	2010.01015 1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,µ	2 b	-	36.1	<i>t</i> ₁	0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
		1μ	DV		136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9]	1.0 1.6	$BR(\tilde{t}_1 \to q\mu) = 100\%, \cos\theta_t = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 e, µ	≥6 jets		139	<i>x</i> ⁰ ₁ 0.2-0.32		Pure higgsino	ATLAS-CONF-2021-007
									I
nly a	a selection of the available ma	ss limits on	new state	es or	1) *	I	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

M. Citron mcitron@ucsb.edu

32

Long-lived particles in the Standard Model

Why milli-charged?

Consider a model with kinetic mixing with a new 'dark' boson - link to the dark/hidden sector

Why milli-charged?

Now add fermion charged under new U'(1):

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{4} B'_{\mu\nu} B^{\prime\mu\nu} - \frac{\kappa}{2} B'_{\mu\nu} B^{\mu\nu} + i\overline{\psi}(\phi + ie'B' + iM_{mCP})\psi$$

Standard trick - redefine gauge field B': $B'
ightarrow B' - \kappa B$

Removes mixing term and generates hypercharge for new fermion $\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{4} B'_{\mu\nu} B^{\prime\mu\nu} + i\overline{\psi}(\partial + i\kappa e'B + ie'B' + iM_{mCP})\psi$

new fermion has small EM charge: milli-charged particle

Future searches at CMS/ATLAS

Rejected events are lost forever!

- New trigger selections significantly expand acceptance for Run 3 - started July 2022
 - e.g. CMS using calorimetry timing, "clusters" in the muon clusters to open new phase space
- HL-LHC: exciting upgrades and new detectors planned!
 - e.g. Timing detectors, high granularity calorimetry, ...

Review of opportunities for new long-lived particle triggers in Run 3 of the Large Hadron Collider

Produced for the LPCC Long-Lived Particles Working Group.

Editors:

Juliette Alimena,⁵ James Beacham,⁴ Freya Blekman,³ Adrián Casais Vidal,¹¹ Xabier Cid Vidal,¹¹ Matthew Citron,³¹ David Curtin,³⁶ Albert De Roeck,⁵ Nishita Desai,²⁴ Karri Folan Di Petrillo,⁸ Yuri Gershtein,²¹ Louis Henry,^{10,27,5} Tova Holmes,³⁵ Brij Jashal,¹⁰ Philip James Ilten,³³ Sascha Mehlhase,⁶ Javier Montejo Berlingen,⁵ Arantza Oyanguren,¹⁰ Giovanni Punzi,²⁸ Murilo Santana Rangel,²⁶ Federico Leo Redi,⁹ Lorenzo Sestini,¹³ Emma Torro,¹⁰ Carlos Vázquez Sierra,⁵ Maarten van Veghel,³⁷ Mike Williams,¹⁷ José Zurita.¹⁰

https://arxiv.org/abs/2110.14675

10-4

300

400

500

600

Mass[GeV] DP2022 025

700

M. Citron mcitron@ucsb.edu

∃ 10-€

 10^{-7}

101

102

10

cτ [mm]

SND in detail

Emulsion/tungsten bricks each comprised of 60 interleaved film + 59 tungsten layers

CNIC -+-+---FRONT VIEW

now with beam muon and neutrino candidate interactions

 Analysing data from 1/20 scale emulsion detector extracted July 2022

EDGES and millicharged dark matter

- EDGES observes anomalous
 deepening in absorption
 spectrum → anomalous
 cooling of baryons in the
 early universe
- Could be explained by fraction of DM being millicharged (<u>1908.06986</u>)
- Dedicated millicharged detectors can close the gap to direct DM detection!
- Exciting cosmological probe in accelerator setting!

Low mass decaying LLPs

FORWARD MULTIPARTICLE SPECTROMETER SCHEMATIC (provisonal dimensions – not to scale D1 35 Tm DIPOLE 0.5 mm Be Thin 7~82 m (with ribs) R = 12.5 cmLHC VACUUM DECAY VOLUME 18 m Z = 101 r 7 = 98 m Z = 119/m **VF-HGCAL** IR 5 / CMS COLLISIONs

FACET: ~100m in front of CMS

- The lower the mass of the LLP (typically) the higher the **forward** production
- Far forward detectors target m_{LLP} < ~GeV to provide sensitivity to e.g. ALPs, dark photons, dark higgs, ...
- Forward physics facility (FPF) designed to comprehensively cover forward BSM/SM signatures

FASER: installed ~400m from ATLAS IP

Disclaimer: not comprehensive summary of physics reach!

- Interactions of many LLPs too weak to observe with general purpose detectors: e.g. light DM, millicharged particles, ...
- Require dedicated detectors with large volume of active material
- Range of detector designs provides comprehensive coverage (including several at FPF)

Disclaimer: not comprehensive summary of physics reach!

M. Citron mcitron@ucsb.edu

41

Heavy(ish) decaying LLPs

- Centrally produced LLPs arise in wide range of well motivated models: Twin Higgs, HNL, ...
- Wide mass range: from ~ GeV to ~TeV
- Range of detectors proposed: optimal lifetime coverage ~ distance from detector to IP

Disclaimer: not comprehensive summary of physics reach!

M. Citron mcitron@ucsb.edu

MATHUSLA: ~ IKEA at CMS IP surface

CODEX-b: detector + Pb shield at LHCb IP

ANUBIS: instrument ATLAS shaft

Direct detection: highly interacting LLPs

- Highly interacting LLPs can produce highly ionising tracks and/or get trapped in detector material: e.g. magnetic monopoles, dyons, R-hadrons, ...
- Scan detector material for evidence of LLPs or place material in detector and wait for decays

MoEDAL/MoEDAL-MALL: search for magnetic monopoles, dyons and charged particles

NTDs-C-side

Trapped particle detector: embed within CMS

Disclaimer: not comprehensive summary of physics reach!