Interpreting Flavor and Electroweak Puzzles

Wolfgang Altmannshofer waltmann@ucsc.edu

💿 UC SANTA CRUZ

CIPANP 2022,

14th Conference on the Intersections of Particle and Nuclear Physics

Lake Buena Vista, August 29 - September 4, 2022

Basic Idea Behind Indirect Probes of New Physics

Basic Idea Behind Indirect Probes of New Physics

Anomalies at low energies can establish a new scale in particle physics \Rightarrow "no-loose theorems", "guaranteed" discoveries at colliders, ...

(at least in principle)

Anomalies and Puzzles in 2022

Anomalies and Puzzles in 2022

Bottom-Up Approach to the Anomalies

(inspired by Marco Nardecchia)

Implications of the muon g-2

Anomalous Magnetic Moment of the Muon

4.2 σ discrepancy between the experimental average (Fermilab g-2, 2104.03281) and the SM consensus (Aoyama et al. 2006.04822)

(see, however, the lattice results 2002.12347, 2206.06582, 2206.15084, 2207.04765)

$$\Delta a_{\mu} = (251 \pm 59) imes 10^{-11}$$

Model Independent Analysis and New Physics Scale

The leading effective operator that modifies the anomalous magnetic moment of the muon and that respects $SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{\text{eff}} = \frac{C}{\Lambda_{\text{NP}}^2} H(\bar{\mu}\sigma_{\alpha\beta}\mu) F^{\alpha\beta} \quad \Rightarrow \quad \Delta a_{\mu} \simeq \frac{4m_{\mu}vC}{e\sqrt{2}\Lambda_{\text{NP}}^2}$$

Model Independent Analysis and New Physics Scale

The leading effective operator that modifies the anomalous magnetic moment of the muon and that respects $SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{\text{eff}} = \frac{C}{\Lambda_{\text{NP}}^2} H(\bar{\mu}\sigma_{\alpha\beta}\mu) F^{\alpha\beta} \quad \Rightarrow \quad \Delta a_{\mu} \simeq \frac{4m_{\mu}vC}{e\sqrt{2}\Lambda_{\text{NP}}^2}$$

strong coupling
$$\frac{1}{\Lambda_{NP}^2} H(\bar{\mu}\sigma_{\alpha\beta}\mu)F^{\alpha\beta}$$
 $\Lambda_{NP} \simeq 290 \text{ TeV}$

weak coupling

$$rac{e}{16\pi^2}rac{1}{\Lambda_{
m NP}^2}H(ar{\mu}\sigma_{lphaeta}\mu)F^{lphaeta} \qquad \Lambda_{
m NP}\simeq 14~{
m TeV}$$

weak coupling + MFV

$$\frac{e y_{\mu}}{16\pi^2} \frac{1}{\Lambda_{\rm NP}^2} H(\bar{\mu}\sigma_{\alpha\beta}\mu) F^{\alpha\beta} \qquad \qquad \Lambda_{\rm NP} \simeq 280 \; {\rm GeV}$$

(MFV = Minimal Flavor Violation)

New Physics Models for $(g-2)_{\mu}$

- In the strongly coupled case, the new physics scale could be extremely high, outside the reach of current and future colliders. (However, I am not aware of any actual model)
- Most explanations of $(g-2)_{\mu}$ predict:

new physics not far above the electroweak scale ("heavy new physics": SUSY, leptoquarks, Z', ...)

or

new physics considerably below the electroweak scale ("light new physics": dark photons, axions, light Z', ...)

Heavy New Physics Example: SUSY

It is very well known that the MSSM can give sizeable contributions to (g – 2)_μ via tan β enhanced slepton chargino/neutralino loops

Athron et al. 2104.03691 + many others (apologies for the omission)

- Sleptons, charginos, neutralinos need to be pretty light
- Compressed spectra to avoid exising LHC constraints
- Good discovery prospects at the high luminosity LHC and e⁺e⁻ colliders (ILC, CLIC)

Heavy New Physics Example: SUSY

 It is very well known that the MSSM can give sizeable contributions to (g – 2)_μ via tan β enhanced slepton chargino/neutralino loops

Athron et al. 2104.03691 + many others (apologies for the omission)

- Sleptons, charginos, neutralinos need to be pretty light
- Compressed spectra to avoid exising LHC constraints
- Good discovery prospects at the high luminosity LHC and e⁺e⁻ colliders (ILC, CLIC)

 In non-minimal SUSY scenarios, sleptons, charginos, neutralinos can be significantly heavier

WA, Gadam, Gori, Hamer 2104.08293

New gauge bosons are well known candidates to explain $(g-2)_{\mu}$ (e.g. Greljo et al. 2203.13731)

Dark photons have been ruled out for quite a while

Gauged $L_{\mu} - L_{\tau}$ is one of the least constrained options

New gauge bosons are well known candidates to explain $(g - 2)_{\mu}$ (e.g. Greljo et al. 2203.13731)

Dark photons have been ruled out for quite a while

Gauged $L_{\mu} - L_{\tau}$ is one of the least constrained options

WA, Gori, Pospelov, Yavin, 1406.2332; WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

Implications of the $b \rightarrow s\ell\ell$ Anomalies $(R_K, R_{K^*} \text{ and Friends})$

Evidence for Lepton Flavor Universality Violation

$$R_{K^{(*)}} = rac{BR(B o K^{(*)} \mu \mu)}{BR(B o K^{(*)} ee)} \stackrel{ ext{SM}}{\simeq} 1$$

$$\mathsf{R}_{\mathcal{K}^+}^{[1,6]} = 0.846^{+0.042}_{-0.039}{}^{+0.013}_{-0.012} \; (3.1\sigma)$$

$$\begin{split} R^{[0.045,1.1]}_{K^{*0}} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{K^{*0}} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{K_S} &= 0.66^{+0.20}_{-0.14-0.04} \; (\sim 1.5\sigma) \\ R^{[0.045,6]}_{K^{*+}} &= 0.70^{+0.18}_{-0.13-0.04} \; (\sim 1.5\sigma) \\ R^{[0.1,6]}_{\rho K} &= 0.86^{+0.14}_{-0.11} \pm 0.05 \; (\sim 1\sigma) \end{split}$$

LHCb 2103.11769, LHCb 1705.05802, 1912.08139, 2110.09501; also Belle 1904.02440, 1908.01848

Model Independent Analysis

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

neglecting tensor operators and additional scalar operators (they are dimension 8 in SMEFT: Alonso, Grinstein, Martin Camalich 1407.7044)

Wolfgang Altmannshofer (UCSC)

Interpreting Flavor and Electroweak Puzzles

Global Fits of Rare $b \rightarrow s\ell\ell$ Decays

$$\begin{split} & C_{9}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu) \\ & C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu) \end{split}$$

LFU ratios

WA, Stangl 2103.13370 (other recent fits: Geng et al. 2103.12738; Cornella et al. 2103.16558; Alguero et al. 2104.08921; Hurth et al. 2104.10058; Gubernari et al. 2206.03797)

Global Fits of Rare $b \rightarrow s\ell\ell$ Decays

WA, Stangl 2103.13370 (other recent fits: Geng et al. 2103.12738; Cornella et al. 2103.16558; Alguero et al. 2104.08921; Hurth et al. 2104.10058; Gubernari et al. 2206.03797)

 $C_{9}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)$ $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

LFU ratios

- $B_s \rightarrow \mu^+ \mu^-$ branching ratio (with latest CMS update probably compatible with SM-like C_{10})
- $b \rightarrow s \mu \mu$ observables
- overall remarkable consistency

The New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 120 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic tree $\frac{1}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

(MFV = Minimal Flavor Violation)

Model Independent Approach at the LHC

- flavor changing operators are probed up to scales of few TeV
- order of magnitude is missing to probe the $b \rightarrow s\ell\ell$ anomalies
- \rightarrow would need a 100 TeV collider

Simplified Models for R_K and R_{K^*}

possible tree level explanations:

- ► Z' Bosons
- Lepto-Quarks

upper bounds on flavor violating couplings from B_s mixing imply upper bounds on the particle masses (e.g. Di Luzio et al. 1909.11087)

$$\blacktriangleright$$
 $m_{Z'} \lesssim g_{\mu} imes 5 {
m TeV}$

 \blacktriangleright m_{LQ} \lesssim (30 – 60)TeV (depending on the lepto-quark representation)

 \rightarrow a weakly coupled Z' might be in reach of the LHC

My Favorite Z' Model

Z' based on gauged $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks

WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$

My Favorite Z' Model

Z' based on gauged $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks

WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

predicted Lepton Universality Violation!

Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$

Probing the $L_{\mu} - L_{\tau}$ Parameter Space

WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

Simplified Leptoquark Models

Spin	G _{SM}	Name	Characteristic process	First time used for $b o s \mu \mu$
0	$(\bar{3},1)_{1/3}$	<i>S</i> ₁	$b_{L} \xrightarrow{\nu} S_{1} \xrightarrow{S_{1}} t \qquad \mu_{L}$	Bauer, Neubert, arXiv:1511.01900
0	$(\bar{3},3)_{1/3}$	S ₃	$b_L \xrightarrow{S_3} \mu_L$	Hiller, Schmaltz, arXiv:1408.1627
0	(3,2) _{7/6}	R ₂	$b_L \xrightarrow{t} R_2 \mu_L$	Bečirević, Sumensari, arXiv:1704.05835
1	(3,1) _{2/3}	U ₁	$b_L \qquad \mu_L \qquad \mu_L \qquad \mu_L$	Barbieri et al., arXiv:1512.01560
1	(3,3) _{2/3}	U ₃	$b_L \xrightarrow{U_3} \mu_L$	Fajfer, Košnik, arXiv:1511.06024

from talk by Peter Stangl LF(U)V workshop, Zurich, July 4

(the loop level leptoquarks struggle to accommodate the anomalies)

Wolfgang Altmannshofer (UCSC)

Leptoquark Signatures at the LHC

e.g. Allanach, Gripaios, You 1710.06363, Hiller, Loose, Nisandzic 1801.09399

• Leptoquarks are pair produced through QCD interactions

 $pp
ightarrow ext{LQ} ext{LQ}
ightarrow j(b) \mu^+ j(b) \mu^-$

 Leptoquarks can be singly produced through their couplings to quarks/leptons

 $pp \rightarrow LQ \ \mu \rightarrow j(b)\mu^+\mu^-$

 Leptoquarks contribute to di-muon production

$$pp \rightarrow \mu^+\mu^-$$

Leptoquark Signatures at the LHC

e.g. Allanach, Gripaios, You 1710.06363, Hiller, Loose, Nisandzic 1801.09399

 Leptoquarks are pair produced through QCD interactions

 $pp
ightarrow ext{LQ} ext{LQ}
ightarrow j(b) \mu^+ j(b) \mu^-$

 Leptoquarks can be singly produced through their couplings to quarks/leptons

 $pp \rightarrow LQ \ \mu \rightarrow j(b)\mu^+\mu^-$

 Leptoquarks contribute to di-muon production

$$\textit{pp} \rightarrow \mu^+ \mu^-$$

Also: excellent prospects to see these leptoquarks at a muon collider

Huang, Jana, Queiroz, Rodejohann 2103.01617, Asadi, Capdevilla, Cesarotti, Homiller 2104.05720

Implications of the $b \rightarrow c \tau \nu$ Anomalies (R_D, R_{D^*})

LFU in Charged Current Decays: R_D and R_{D^*}

Bernlochner, Franco Sevilla, Robinson, 2101.08326

 $egin{aligned} R_D &= rac{BR(B o D au
u)}{BR(B o D\ell
u)} \ R_{D^*} &= rac{BR(B o D^* au
u)}{BR(B o D^*\ell
u)} \end{aligned}$

 $\ell = \mu, e$ (BaBar/Belle) $\ell = \mu$ (LHCb)

 $\textit{R}_{\textit{D}}^{\textit{exp}}/\textit{R}_{\textit{D}}^{\textit{SM}} = 1.13 \pm 0.10 \;, \quad \textit{R}_{\textit{D}^{*}}^{\textit{exp}}/\textit{R}_{\textit{D}^{*}}^{\textit{SM}} = 1.15 \pm 0.06$

combined discrepancy with the SM: 3.6 σ

(the heavy flavor averaging group quotes 3.1σ)

Wolfgang Altmannshofer (UCSC)

Interpreting Flavor and Electroweak Puzzles

Model Independent Analysis

$$\mathcal{H}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

 $O_i = \text{contact interactions}$ with vector, scalar or tensor currents

Model Independent Analysis

$$\mathcal{H}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

 $O_i = \text{contact interactions}$ with vector, scalar or tensor currents

rescaling of the SM vector operator fits the data best

combinations of operators are also possible

(also Murgui et al. 1904.09311, Asadi, Shih 1905.03311,

Cheung et al. 2002.07272, ...)

Wolfgang Altmannshofer (UCSC)

Interpreting Flavor and Electroweak Puzzles

The New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$$
 $\Lambda_{NP} \simeq 8.4 \text{ TeV}$ generic tree $\frac{1}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$ $\Lambda_{NP} \simeq 2.4 \text{ TeV}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{cb} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$ $\Lambda_{NP} \simeq 0.5 \text{ TeV}$

(MFV = Minimal Flavor Violation)

The New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu} P_L b) (\bar{\tau}\gamma^{\nu} P_L \nu)$$
 $\Lambda_{NP} \simeq 8.4 \text{ TeV}$ generic tree $\frac{1}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu} P_L b) (\bar{\tau}\gamma^{\nu} P_L \nu)$ $\Lambda_{NP} \simeq 2.4 \text{ TeV}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{cb} (\bar{c}\gamma_{\nu} P_L b) (\bar{\tau}\gamma^{\nu} P_L \nu)$ $\Lambda_{NP} \simeq 0.5 \text{ TeV}$

(MFV = Minimal Flavor Violation)

rather low scale \rightarrow model building is non-trivial

Model Independent Approach at the LHC

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)

WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...

Model Independent Approach at the LHC

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)

WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...

- Collider and low energy sensitivities are complementary
- High-luminosity LHC can probe relevant parts of parameter space

Simplified Models for R_D and R_{D^*}

Need a tree level mediator: 3 options

- 1) W' bosons excluded by direct searches
- 2) Charged Higgs bosons strongly constrained by $B_c \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$ kinematic distributions
- 3) Leptoquarks that couple dominantly to the 3rd generation can work.

Collider Signature of the Leptoquarks

 Robust collider signature of leptoquarks that explain R_D and R_{D*}: non-standard di-tau production at high invariant mass

Faroughy et al. 1609.07138

CMS-PAS-EXO-19-016

Combined Explanations of the B anomalies

- ► U₁ leptoquark can simultaneously explain R_K(*) and R_D(*) (recent studies: Cornella et al. 2103.16558; Angelescu et al. 2103.12504)
- *U*₁ could be the remnant of an extended gauge group: "4321 models", (Pati-Salam)³ models (Di Luzio et al. 1708.08450; Bordone et al. 1712.01368, ...)

Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×
S_1 (3 , 1 , 1/3)	×	\checkmark
R_2 (3, 2, 7/6)	×	\checkmark
U_1 (3 , 1 , 2/3)	✓	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×

Combined Explanations of the B anomalies

- ► U₁ leptoquark can simultaneously explain R_K(*) and R_D(*) (recent studies: Cornella et al. 2103.16558; Angelescu et al. 2103.12504)
- ► U₁ could be the remnant of an extended gauge group: "4321 models", (Pati-Salam)³ models (Di Luzio et al. 1708.08450; Bordone et al. 1712.01368, ...)

Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×
S_1 (3 , 1 , 1/3)	×	\checkmark
R_2 (3, 2, 7/6)	×	\checkmark
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×

also attempts for simultaneous explanations in RPV SUSY

Deshpande, He, 1608.04817; WA, Dev, Soni 1704.06659; Earl, Gregoire 1806.01343; Trifinopoulos 1807.01638; WA, Dev, Soni, Sui 2002.12910; Dev, Soni, Xu 2106.15647; ...

Fleshed Out (Pati-Salam)³ Model

Flavor anomalies from the U_1 leptoquark of (Pati-Salam)³

Flavor ↔ special position (topological defect) in an extra (compact) space-like dimension Dvali & Shifman. '00

Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies

Bordone, Cornella, Fuentes-Martin, GI '17 Fuentes-Martin, GI, Pages, Stefanek '20

Possible to implement anarchic neutrino masses via an inverse see-saw mechanism

(talk by Gino Isidori @ Beyond the Anomalies workshop, Durham 2021)

Implications of the W Mass

W Mass Measurements

CDF measurement is 7σ away from the SM prediction !?!

The SM predicts a relation between the W mass, the Z mass, and weak mixing angle (precise relation is subject to higher order correction, choice of renormalization scheme, ...)

$$\frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \rho \simeq 1$$

► The SM predicts a relation between the W mass, the Z mass, and weak mixing angle (precise relation is subject to higher order correction, choice of renormalization scheme, ...)

$$\frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \rho \simeq 1$$

New physics could enter by:

• changing the mass of the W (e.g. mixing of W with a W')

► The SM predicts a relation between the W mass, the Z mass, and weak mixing angle (precise relation is subject to higher order correction, choice of renormalization scheme, ...)

$$\frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \rho \simeq 1$$

New physics could enter by:

- changing the mass of the W (e.g. mixing of W with a W')
- changing the mass of the Z (e.g. mixing of Z with a Z')

► The SM predicts a relation between the W mass, the Z mass, and weak mixing angle (precise relation is subject to higher order correction, choice of renormalization scheme, ...)

$$\frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \rho \simeq 1$$

New physics could enter by:

- changing the mass of the W (e.g. mixing of W with a W')
- changing the mass of the Z (e.g. mixing of Z with a Z')
- ► changing the weak mixing angle (e.g. by modifying Z couplings)

► The SM predicts a relation between the W mass, the Z mass, and weak mixing angle (precise relation is subject to higher order correction, choice of renormalization scheme, ...)

$$\frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \rho \simeq \frac{\sum_i (I_i(I_i+1) - Y_i^2) v_i^2}{\sum_i 2Y_i^2 v_i^2}$$

New physics could enter by:

- changing the mass of the W (e.g. mixing of W with a W')
- changing the mass of the Z (e.g. mixing of Z with a Z')
- ► changing the weak mixing angle (e.g. by modifying Z couplings)
- changing the relation itself (e.g. exotic Higgs sectors)

Model Independent Approach

 New physics is often model independently described by oblique corrections

$$S {gg' \over 16\pi} {1 \over v^2} (H^\dagger \sigma^a H) W^a_{\mu
u} B^{\mu
u}$$

$$\frac{T}{8\pi} \frac{e^2}{v^2} \frac{1}{v^2} (H^{\dagger} \overleftrightarrow{D}_{\mu} H)^2 + \dots$$

Need a generic new physics scale of a few TeV

Lu et al. 2204.03796 (also de Blas et al. 2204.04204; Strumia 2204.04191; ... + many others, apologies for the omission)

Connection with the B Anomalies?

- Z' models that can explain the $b \rightarrow s\ell\ell$ anomalies might also explain shifts in the *W* mass
- Example 1: gauge a linear combination of hypercharge, baryon number, and individual lepton numbers

WA, Davighi, Nardecchia 1909.02021

$$X = a_Y Y - a_e (B/3 - L_e) - a_\mu (B/3 - L_\mu) - a_\tau (B/3 - L_\tau)$$

Connection with the B Anomalies?

- Z' models that can explain the b → sℓℓ anomalies might also explain shifts in the W mass
- Example 1: gauge a linear combination of hypercharge, baryon number, and individual lepton numbers

WA, Davighi, Nardecchia 1909.02021

$$X = a_Y Y - a_e (B/3 - L_e) - a_\mu (B/3 - L_\mu) - a_\tau (B/3 - L_\tau)$$

 Example 2: gauge a linear combination of third generation hypercharge, baryon number, and lepton number

Allanach, Davighi 2205.12252

$$X = sY_3 + t(B_3 - L_3)$$

- Anomalies might be indirect signs of physics beyond the standard model.
- Anomalies could establish a new mass scale in particle physics
- \rightarrow would have a transformative impact:

motivate a large new physics model building effort and provide targets for direct searches at the LHC and future colliders

Back Up

$b ightarrow s \mu \mu$ Branching Ratios

Wolfgang Altmannshofer (UCSC)

The P'_5 Anomaly

 $P_5^\prime \sim$ a moment of the $B
ightarrow K^* \mu^+ \mu^-$ angular distribution

Anomaly persists in the latest update of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with 2016 data. (Anomaly also seen in $B^{\pm} \rightarrow K^{*\pm}\mu^+\mu^-$ LHCb 2012.13241)

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2 \right)$$

Forward backward asymmetry is sensitive to the chirality strcuture

$$m{A}_{ ext{FB}} = rac{-3 ext{Re}(C_9C_{10}^*)}{2(|C_9|^2+|C_{10}|^2)}$$

Need charge tagging to measure the forward backward asymmetry

Sensitivity Projections

WA, Gadam, Profumo 2203.07495 and in preparation

- branching ratio (green) and forward backward asymmetry (blue) are highly complementary
- 10 TeV muon collider has better sensitivity than the current and projected rare B decay results (dashed)

(see also Huang et al. 2103.01617; Asadi et al. 2104.05720

Azatov et al. 2205.13552 for related studies)

Wolfgang Altmannshofer (UCSC)

Interpreting Flavor and Electroweak Puzzles